对偶SVM

1.对偶问题的推导

为什么要求解对偶问题?一是对偶问题往往更容易求解,二是可以自然的引入核函数。

1.1 用拉格朗日函数将原问题转化为“无约束”等价问题

原问题是:

写出它的拉格朗日函数:

然后我们的原问题就等价为:

为什么可以这样等价:

即:对于不满足约束条件的(b,w),min里面趋于无穷大,因此min就把这些b,w舍去了;对于满足约束条件的解,min里面就刚好是原来的目标函数,刚好与原问题等价。

1.2 导出拉格朗日对偶问题

首先我们有如下成立:

然后我们取右边式子中的“best”阿尔法,仍然会有大于等于号成立,因为best is one of any:

这时右边的式子就是对偶问题。这里直接给出一个定理,当满足下面条件时(对于SVM来说刚好满足),原始问题和对偶问题的解是相同的:

并且它们的最优解满足KKT条件:

1.3 用KKT条件来简化对偶问题

我们的对偶问题现在是:

根据KKT条件,我们有:

把第一个代进来:

再把第二个代进来:

这时候,我们的问题里面就只剩一个参数阿尔法了。再把平方项展开,写的好看一点,就得到了标准的硬间隔SVM对偶问题:

2. 解对偶问题

还是解QP那一套:

时间: 2024-10-13 10:51:13

对偶SVM的相关文章

SVM原理与实践

SVM迅速发展和完善,在解决小样本.非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.从此迅速的发展起来,已经在许多领域(生物信息学,文本和手写识别等)都取得了成功的应用.在地球物理反演当中解决非线性反演也有显著成效,例如(SVM在预测地下水涌水量问题等). SVM中的一大亮点是在传统的最优化问题中提出了对偶理论,主要有最大最小对偶及拉格朗日对偶. SVM的关键在于核函数.低维空间向量集通常难于划分,解决的方法是将它们映射到高维空间.但这个办法带来的困

【机器学习基础】对偶支持向量机

引言 在上一小节中,我们介绍,用二次规划的方法来求解支持向量机的问题.如果用非线性的特征转化的方式,可以在一个更复杂的Z空间里做二次规划.这种思想是希望通过最大间隔的方式来控制模型的复杂度,通过特征转换来实现复杂的边界. 但是这引入了新的问题:在进行特征转换之后,在新的高维空间中,求解二次规划问题就会变得很困难.甚至在无限大的维度上求解最佳化的问题就变得不可能了. 所以,这一小节,我们要解答的是,通过非常复杂的特征转换,甚至无限维的特征转换,该如何移除在Z空间上对高维度的依赖. 对偶问题 对于原

【机器学习基础】支持向量回归

引言 这一小节介绍一下支持向量回归,我们在之前介绍的核逻辑回归使用表示定理(Representer Theorem),将逻辑回归编程Kernel的形式,这一节我们沿着这个思路出发,看看如何将回归问题和Kernel的形式结合起来. Kernel Ridge Regression 上次介绍的表示定理告诉我们,如果我们要处理的是有L2的正则项的线性模型,其最优解是数据zn的线性组合.我们可以将这样的线性模型变成Kernel的形式. 既然我们知道这样带有L2-Regularizer的线性回归模型的最佳解

SVM支持向量机-拉格朗日,对偶算法的初解

许多地方得SVM讲得都很晦涩,不容易理解,最近看到一篇不错的博文写得很好,同时加上自己的理解,重新梳理一下知识要点 http://blog.csdn.net/zouxy09/article/details/17291543 一.引入 SVM是个分类器.我们知道,分类的目的是学会一个分类函数或分类模型(或者叫做分类器),该模型能把数据库中的数据项映射到给定类别中的某一个,从而可以用于预测未知类别. 对于用于分类的支持向量机,它是个二分类的分类模型.也就是说,给定一个包含正例和反例(正样本点和负样本

支持向量机(SVM)(二)-- 拉格朗日对偶(Lagrange duality)

简介: 1.在之前我们把要寻找最优的分割超平面的问题转化为带有一系列不等式约束的优化问题.这个最优化问题被称作原问题.我们不会直接解它,而是把它转化为对偶问题进行解决. 2.为了使问题变得易于处理,我们的方法是把目标函数和约束全部融入一个新的函数,为了使问题变得易于处理,我们的方法是把目标函数和约束全部融入一个新的函数,即拉格朗日函数,再通过这个函数来寻找最优点.即拉格朗日函数,再通过这个函数来寻找最优点. 3.约束条件可以分成不等式约束条件和等式约束条件,只有等式约束条件的问题我们在高等数学课

SVM小白教程(2):拉格朗日对偶

在上一篇文章中,我们推导出了 SVM 的目标函数: \[ \underset{(\mathbf{w},b)}{\operatorname{min}} ||\mathbf{w}|| \\ \operatorname{s.t.} \ y_i(\mathbf{w}^T\mathbf{x_i}+b) \ge \delta, \ \ i=1,...,m \] 由于求解过程中,限制条件中的 \(\delta\) 对结果不产生影响,所以简单起见我们把 \(\delta\) 替换成 1.另外,为了之后求解的方便

SVM及其对偶

引自 http://my.oschina.net/wangguolongnk/blog/111349 1. 支持向量机的目的是什么? 对于用于分类的支持向量机来说,给定一个包含正例和反例(正样本点和负样本点)的样本集合,支持向量机的目的是寻找一个超平面来对样本进行分割,把样本中的正例和反例用超平面分开,但是不是简单地分看,其原则是使正例和反例之间的间隔最大. 超平面是什么呢?简单地说,超平面就是平面中的直线在高维空间中的推广.那么,对于三维空间,超平面就是平面了.对于更高维的空间,我们只能用公式

SVM3 Soft Margin SVM

之前分为两部分讨论过SVM.第一部分讨论了线性SVM,并且针对线性不可分的数据,把原始的问题转化为对偶的SVM求解.http://www.cnblogs.com/futurehau/p/6143178.html 然后考虑到特征数量特别特别多的时候,引入核函数的求解.http://www.cnblogs.com/futurehau/p/6149558.html 但是,之前也遗留了一个问题,就是比如高斯核函数或其他的核函数,虽然large margin能够在一定程度上防止过拟合,但是加入你的核函数太

支持向量机SVM

SVM(Support Vector Machine)有监督的机器学习方法,可以做分类也可以做回归.有好几个模型,SVM基本,SVM对偶型,软间隔SVM,核方法,前两个有理论价值,后两个有实践价值.下图来自龙老师整理课件. 基本概念 线性SVM,线性可分的分类问题场景下的SVM.硬间隔. 线性不可分SVM,很难找到超平面进行分类场景下的SVM.软间隔. 非线性SVM,核函数(应用最广的一种技巧,核函数的选择十分重要). SVR(支持向量回归).可以做回归. SVC,用SVM进行分类. 一.硬间隔