简学lingo(四)——实例篇

本片将会接着上篇实例来写,如要參照能够看下上篇的http://blog.csdn.net/yzu_120702117/article/details/38453791

如有句法上的问题能够參照我之前总结的基础篇,传送门:http://blog.csdn.net/yzu_120702117/article/details/38444485http://blog.csdn.net/yzu_120702117/article/details/38415153

6、最优选择问题

某钻井队要从10个可供选择的井位中确定5个钻井探油,使总的钻探费用为最小。若10个井位的代号为s1,s2,...,s10,对应的钻探费用c1,c2,...,c10为5,8,10,6,9,5,7,6,10,8.而且井位选择上要满足下列限制条件:

(1) 或选择s1和s7,或选择钻探s9;

(2) 选择了s3或s4就不能选s5,或反过来也一样;

(3) 在s5,s6,s7,s8中最多仅仅能选两个.

试建立这个问题的整数规划模型,确定选择的井位。

取0-1变量s_i,若s_i=1,则表示选取第i个井。若s_i=0,则表示不选取第i个井。

建立数学模型例如以下:

解决的代码例如以下

model:
sets:
variables/1..10/:s,cost;
endsets
data:
cost=5 8 10 6 9 5 7 6 10 8;
enddata
min=[email protected](variables:cost*s);
(s(1)+s(7)-2)*(s(9)-1)=0;    !约束条件
s(3)*s(5)+s(4)*s(5)=0;
@sum(variables(i)|i#ge#5 #and# i#le#8:s(i))<=2;
@sum(variable:s)=5;
@for(variables:@bin(s));
end

7.运输加选址问题

某公司有六个建筑工地,位置坐标(ai,bi)(单位:公里),水泥日用量di(单位:吨)

(1)现有2个料场。位于A(5,1),B(2,7),记(xj。yj)。及,2,日存储量ej各有20吨。

如果工地和料场之间有直线道路。制定每天的供应计划,即从A,B两料场分别向工地运送水泥,是得总的吨公里数最小,当中Cij表示i工地从j料场运来的水泥量。则能够建立模型

这个模型能够这样解答

model:
sets:
demand/1..6/:a,b,d;
supply/1..2/:x,y,e;
link(demand,supply):c;
endsets
data:
a=1.25 8.75 0.5 5.75 3 7.25;
b=1.25 0.75 4.75 5 6.5 7.75;
d=3 5 4 7 6 11;
x=5 2;
y=1 7;
e=20 20;
enddata
[email protected](link(i,j):c(i,j)*@sqrt((a(i)-x(j))^2+(b(i)-y(j))^2));   !目标函数
@for(demand(i):@sum(supply(j):c(i,j))=d(i));
@for(supply(j):@sum(demand(i):c(i,j))<=e(j));
end

(2)改建两个新料场。须要确定新料场位置(xj,yj)和运量cij。在其它条件不变下使总公里数最小。模型与上面的一样,位置变量变为料场位置(xj,yj),变为非线性优化问题。

model:
sets:
demand/1..6/:a,b,d;
supply/1..2/:x,y,e;
link(demand,supply):c;
endsets
data:
a=1.25 8.75 0.5 5.75 3 7.25;
b=1.25 0.75 4.75 5 6.5 7.75;
d=3 5 4 7 6 11;
e=20 20;
enddata
init:        !这里对x,y赋初值
x=5 2;
y=1 7;
endinit
[obj][email protected](link(i,j):c(i,j)*@sqrt((a(i)-x(j))^2+(b(i)-y(j))^2));!目标函数;
@for(demand(i):@sum(supply(j):c(i,j))=d(i));
@for(supply(j):@sum(demand(i):c(i,j))<=e(j));
@for(supply:@free(x);@free(y));
end

7.选址问题

某海岛上有12个基本的居民点,每一个居民点的位置(用平面坐标x,y表示。单位km)和居住人数(r)例如以下表所看到的。如今准备在海岛上建一个服务中心为居民提供各种服务。那么服务中心应该建在那里?

如果建在(a,b)处最合理。

建立模型

求解这个模型:

MODEL:
SETS:
VAR/1..12/:X,Y,R;
ENDSETS
DATA:
X=0 8.20 0.50 5.70 0.77 2.87 4.43 2.58 0.72 9.76 3.19 5.55;
Y=0 0.50 4.90 5.00 6.49 8.76 3.26 9.32 9.96 3.16 7.20 7.88;
R=600 1000 800 1400 1200 700 600 800 1000 1200 1000 1100;
ENDDATA
[email protected](VAR:@SQRT((X-A)^2+(Y-B)^2)*R);
END

8.非线性整数规划:

这里给出求解

model:

sets:

row/1..4/:b;

col/1..5/:c1,c2,x;

link(row,col):a;

endsets

data:

c1=1,1,3,4,2;

c2=-8,-2,-3,-1,-2;

a=1 1 1 1 1

1 2 2 1 6

2 1 6 0 0

0 0 1 1 5;

b=400,800,200,200;

enddata     

[email protected](col:c1*x^2+c2*x);

@for(row(i):@sum(col(j):a(i,j)*x(j))<b(i));

@for(col:@gin(x));

@for(col:@bnd(0,x,99));

End

9.婚配问题

10对年龄相当的青年,随意一对男女青年配对的概率pij见下表。

试给出一个配对方案。使总的配对概率最大。

w1        w2        w3        w4        w5       
w6        w7        w8        w9        w10

m1 0.5828    0.2091    0.4154    0.2140    0.6833    0.4514    0.6085    0.0841    0.1210  0.2319

m2 0.4235    0.3798    0.3050    0.6435    0.2126    0.0439    0.0158    0.4544    0.4508  0.2393

m3 0.5155    0.7833    0.8744    0.3200    0.8392    0.0272    0.0164    0.4418    0.7159  0.0498

m4 0.3340    0.6808    0.0150    0.9601    0.6288    0.3127    0.1901    0.3533    0.8928  0.0784

m5 0.4329    0.4611    0.7680    0.7266    0.1338    0.0129    0.5869    0.1536    0.2731  0.6408

m6 0.2259    0.5678    0.9708    0.4120    0.2071    0.3840    0.0576    0.6756    0.2548  0.1909

m7 0.5798    0.7942    0.9901    0.7446    0.6072    0.6831    0.3676    0.6992    0.8656  0.8439

m8 0.7604    0.0592    0.7889    0.2679    0.6299    0.0928    0.6315    0.7275    0.2324  0.1739

m9 0.5298    0.6029    0.4387    0.4399    0.3705    0.0353    0.7176    0.4784    0.8049  0.1708

m10 0.6405    0.0503    0.4983    0.9334    0.5751    0.6124    0.6927    0.5548    0.9084  0.9943

取xx_ij为0-1型决策变量。

模型为:

这里给出求解

model:
sets:
man/m1..m10/;
woman/w1..w10/;
link(man,woman):p,x;
endsets
data:
p=0.5828    0.2091    0.4154    0.2140    0.6833    0.4514    0.6085    0.0841    0.1210    0.2319
  0.4235    0.3798    0.3050    0.6435    0.2126    0.0439    0.0158    0.4544    0.4508    0.2393
  0.5155    0.7833    0.8744    0.3200    0.8392    0.0272    0.0164    0.4418    0.7159    0.0498
  0.3340    0.6808    0.0150    0.9601    0.6288    0.3127    0.1901    0.3533    0.8928    0.0784
  0.4329    0.4611    0.7680    0.7266    0.1338    0.0129    0.5869    0.1536    0.2731    0.6408
  0.2259    0.5678    0.9708    0.4120    0.2071    0.3840    0.0576    0.6756    0.2548    0.1909
  0.5798    0.7942    0.9901    0.7446    0.6072    0.6831    0.3676    0.6992    0.8656    0.8439
  0.7604    0.0592    0.7889    0.2679    0.6299    0.0928    0.6315    0.7275    0.2324    0.1739
  0.5298    0.6029    0.4387    0.4399    0.3705    0.0353    0.7176    0.4784    0.8049    0.1708
  0.6405    0.0503    0.4983    0.9334    0.5751    0.6124    0.6927    0.5548    0.9084   0.9943;
enddata
[email protected](man(i):@sum(woman(j):p(i,j)*x(i,j)));
@for(woman(j):@sum(link(i,j):x(i,j))=1);
@for(man(i):@sum(link(i,j):x(i,j))=1);
@for(link:@bin(x));
end

10.填数问题

分别把1,2,…,16填到图示的16个圈内,使得每一个三角形上的全部圈内的数的和为81(共4个三角形)。

决策变量:e_ij=1,第i个圈填数a_j;e_ij=0,第i个圈不填数a_j。

a_j=j,j=1,2,3,...,16。

模型:

这里给出求解

model:

sets:

number/1..16/:a;

link(number,number):e;

tri1(number)/1 2 3 4 5 6 7 8 9/;

tri2(number)/1 2 3 4 16 15 12 11 10/;

tri3(number)/4 5 6 7 14 13 12 15 16/;

tri4(number)/7 8 9 1 10 11 12 13 14/;

endsets

data:

a=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16;

enddata

[obj][email protected](link(i,j):e(i,j)*a(j));

@for(number(i):@sum(link(i,j):e(i,j))=1);

@for(number(j):@sum(link(i,j):e(i,j))=1);

@for(link(i,j):@bin(e(i,j)));

@sum(number(j):@sum(tri1(i):e(i,j)*a(j)))=81;

@sum(number(j):@sum(tri2(i):e(i,j)*a(j)))=81;

@sum(number(j):@sum(tri3(i):e(i,j)*a(j)))=81;

@sum(number(j):@sum(tri4(i):e(i,j)*a(j)))=81;

@sum(link(i,j):e(i,j)*a(j))=136;

end

红色的那句程序能够去掉,也能够为:[email protected](link(i,j):e(i,j)*a(j)),但求的结果不同。结果都符合要求。

编号1~16的圆圈的填数结果至少有3种:

(1)12 11 1 10 7 8 14 13 5 9 4 16 2 6 15 3

(2)14 3 5 15 8 7 13 4 12 6 11 10 9 2 16 1

(3)14 11 4 15 9 8 13 2 5 16 3 10 12 6 1 7

为了求得很多其它的解,能够约束编号1~16的圆圈的填数结果不为以上3种结果。

<span style="color:#000000;">model:

sets:

number/1..16/:a;

link(number,number):e;

tri1(number)/1 2 3 4 5 6 7 8 9/;

tri2(number)/1 2 3 4 16 15 12 11 10/;

tri3(number)/4 5 6 7 14 13 12 15 16/;

tri4(number)/7 8 9 1 10 11 12 13 14/;

yueshu1:c1;

yueshu2:c2;

yueshu3:c3;

endsets

data:

a=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16;

c1=12 11 1 10 7 8 14 13 5 9 4 16 2 6 15 3;

c2=14 3 5 15 8 7 13 4 12 6 11 10 9 2 16 1;

c3=14 11 4 15 9 8 13 2 5 16 3 10 12 6 1 7;

enddata

[obj][email protected](number(i):@sum(number(j):e(i,j)*a(j)));

@for(number(i):@sum(number(j):e(i,j))=1);

@for(number(j):@sum(link(i,j):e(i,j))=1);

@for(link(i,j):@bin(e(i,j)));

@sum(number(j):@sum(tri1(i):e(i,j)*a(j)))=81;

@sum(number(j):@sum(tri2(i):e(i,j)*a(j)))=81;

@sum(number(j):@sum(tri3(i):e(i,j)*a(j)))=81;

@sum(number(j):@sum(tri4(i):e(i,j)*a(j)))=81;

@sum(link(i,j):e(i,j)*a(j))=136;

@sum(yueshu1(j):@sum(link(i,j):e(i,j)))<16;

@sum(yueshu2(j):@sum(link(i,j):e(i,j)))<16;

@sum(yueshu3(j):@sum(link(i,j):e(i,j)))<16;

end
</span>

这里给出五个模型,能够与我之前总结的相相应,传送门:http://blog.csdn.net/yzu_120702117/article/details/38453791

时间: 2024-10-12 19:43:33

简学lingo(四)——实例篇的相关文章

简学LINGO(三)——实例篇

1. 装配线平衡模型 一个装配线含有一系列的工作站,在最终产品的加工过程中每个工作站执行一种或者是几种特定的任务.装配线周期是指所有工作站完成分配给他们各自任务所花费时间的最大值.平衡装配线的目标是为每个工作站分配加工任务,尽可能使每个工作站执行相同数量的任务,其最终标准是转配线周期最短.不适当的平衡装配线将会产生瓶颈--有较少任务的工作站将被迫等待前面分配了较多任务的工作站. 这个模型的目标是最小化装配线周期,有两类约束: (1)要保证每件任务只能也必须分配至一个工作站来加工: (2)要保证满

老老实实学WCF[ 第七篇] 回话

老老实实学WCF 第七篇 会话 通过前几篇的学习,我们已经掌握了WCF的最基本的编程模型,我们已经可以写出完整的通信了.从这篇开始我们要深入地了解这个模型的高级特性,这些特性用来保证我们的程序运行的高效.稳定和安全. 首先我们来学习会话. 1. 什么是会话 会话是通信双方进行通信的一个时间片.一个语境或者说一个上下文,在这个特定的环境中,通信的双方是彼此认识的,就像两个人在聊天,他们都很清楚谁在聆听自己讲话,也很清楚对方讲的话是给自己听的,简单的说就是通信双方是可以记住彼此的. 一旦会话结束了,

[老老实实学WCF] 第十篇 消息通信模式(下) 双工

原文:[老老实实学WCF] 第十篇 消息通信模式(下) 双工 老老实实学WCF 第十篇 消息通信模式(下) 双工 在前一篇的学习中,我们了解了单向和请求/应答这两种消息通信模式.我们知道可以通过配置操作协定的IsOneWay属性来改变模式.在这一篇中我们来研究双工这种消息通信模式. 在一定程度上说,双工模式并不是与前面两种模式相提并论的模式,双工模式的配置方法同前两者不同,而且双工模式也是基于前面两种模式之上的. 在双工模式下,服务端和客户端都可以独立地调用对方,谁都不用等待谁的答复,同样也不期

[老老实实学WCF] 第七篇 会话

老老实实学WCF 第七篇 会话 通过前几篇的学习,我们已经掌握了WCF的最基本的编程模型,我们已经可以写出完整的通信了.从这篇开始我们要深入地了解这个模型的高级特性,这些特性用来保证我们的程序运行的高效.稳定和安全. 首先我们来学习会话. 1. 什么是会话 会话是通信双方进行通信的一个时间片.一个语境或者说一个上下文,在这个特定的环境中,通信的双方是彼此认识的,就像两个人在聊天,他们都很清楚谁在聆听自己讲话,也很清楚对方讲的话是给自己听的,简单的说就是通信双方是可以记住彼此的. 一旦会话结束了,

一步一步学ROP之linux_x64篇

一步一步学ROP之linux_x64篇 一.序 **ROP的全称为Return-oriented programming(返回导向编程),这是一种高级的内存攻击技术可以用来绕过现代操作系统的各种通用防御(比如内存不可执行和代码签名等).上次我们主要讨论了linux_x86的ROP攻击:<一步一步学ROP之linux_x86篇>,在这次的教程中我们会带来上一篇的补充以及linux_x64方面的ROP利用方法,欢迎大家继续学习. 另外文中涉及代码可在我的github下载:https://githu

开机动画 看图学Android---Android 开发实例教程五

Android实例图解教程目录 http://blog.csdn.net/wyx100/article/details/45061407 在<开发一个新的android界面.界面跳转 看图学Android---Android 开发实例教程三.四>基础完成开机动画,开机界面的图片,在5.5秒内逐渐消失,显示主界面. 只修改StartActivity.java中代码以下部分 StartActivity.java源代码 package com.example.helloword; import an

[老老实实学WCF] 第五篇 再探通信--ClientBase

原文:[老老实实学WCF] 第五篇 再探通信--ClientBase 老老实实学WCF 第五篇 再探通信--ClientBase 在上一篇中,我们抛开了服务引用和元数据交换,在客户端中手动添加了元数据代码,并利用通道工厂ChannelFactory<>类创建了通道,实现了和服务端的通信.然而,与服务端通信的编程模型不只一种,今天我们来学习利用另外一个服务类ClientBase<>来完成同样的工作,了解了这个类的使用方法,我们对服务引用中的关键部分就能够理解了. ClientBase

[老老实实学WCF] 第八篇 实例化

老老实实学WCF 第八篇 实例化 通过上一篇的学习,我们简单地了解了会话,我们知道服务端和客户端之间可以建立会话连接,也可以建立非会话连接,通信的绑定和服务协定的ServiceContract 的SessionMode属性共同决定了连接是否是会话的.会话连接在会话保持阶段服务端可以记住客户端,而非会话连接则不会,相同客户端的多次调用会被认为是不同的客户端发起的. 会话这个特性是许多其他特性的基础,例如我们今天要学习的实例化.连接是否是会话对实例化的过程将产生不同的影响.今天我们就来研究这个问题.

Asp.Net MVC2.0 Url 路由入门---实例篇

本篇主要讲述Routing组件的作用,以及举几个实例来学习Asp.Net MVC2.0 Url路由技术. 接着上一篇开始讲,我们在Global.asax中注册一条路由后,我们的请求是怎么转到相应的View的呢?Controller和Action是怎么解析的?这就是Routing组件干的事情了. Routing的作用:它首先是获取到View传过来的请求,并解析Url请求中Controller和Action以及数据,其次他将识别出来的数据传递给Controller的Action(Controller