BZOJ-3122-随机数生成器-SDOI2013-BSGS

描述


分析

  • 关键就是对式子的变形, 将原递推公式转化为通项公式, 中间会用到等比数列求和公式. 然后切记此时方程两边同乘(1-a), 然后就化简开了.
  • 之后得到的式子是 a^(n-1) = ... (mod p) 然后就可以用BSGS求解了. 注意最后加1.
  • 公式明天补上
  • 几种特判情况 :
    • 如果a = 0, 这时 X = b, 如果t = b输出1, 否则输出-1
    • 如果a = 1, 为什么这也要特判呢, 因为等比数列求和公式里的q一定不为1.

      此时Xi = Xi-1 + b是等差数列 Xn = X1 + (n-1) * b (mod p), i = (Xn - X1 + b) * b^(-1)

      这时还需要看如果b = 0, 输出-1; 如果Xn-X1+b = 0, 求出 i = 0, 但是想想实际情况应该是第 p 天才看到那一页

  • 现在写代码有点不走脑子, 调了半天发现我图省事把变量全开long long结果就是有个地方开了int还没转换.
  • 感觉最近睡的有点少, 该充电了.

代码

https://code.csdn.net/snippets/624452

时间: 2024-10-12 22:51:55

BZOJ-3122-随机数生成器-SDOI2013-BSGS的相关文章

BZOJ 3122 随机数生成器

http://www.lydsy.com/JudgeOnline/problem.php?id=3122 题意:给出p,a,b,x1,t 已知xn=a*xn-1+b%p,求最小的n令xn=t 首先,若x1=t,则返回1 若a=0,则若b=t 返回2,否则无解 若a=1,则T=t-x1+p%p,可以列出方程 b*x+p*y==T % p 若a>=2,则根据等比数列和可得 xn=t=x1*a^(n-1)+b*(a^(n-1)-1)/(a-1) %p 由于p为质数,所以令c=inv[a-1]=(a-1

【bzoj3122】: [Sdoi2013]随机数生成器 数论-BSGS

[bzoj3122]: [Sdoi2013]随机数生成器 当a>=2 化简得 然后 BSGS 求解 其他的特判 : 当 x=t  n=1 当 a=1  当 a=0 判断b==t 1 /* http://www.cnblogs.com/karl07/ */ 2 #include <cstdlib> 3 #include <cstdio> 4 #include <cstring> 5 #include <cmath> 6 #include <map&

[Sdoi2013]随机数生成器(BSGS)

#include<map> #include<cmath> #include<cstdio> #include<iostream> #define ll long long using namespace std; inline int read(){ int x=0;char ch=getchar(); while(ch<'0'||ch>'9')ch=getchar(); while(ch>='0'&&ch<='9'

[BZOJ]3671 随机数生成器(Noi2014)

洛谷上卡不过去的朋友们可以来看看小C的程序(小C才不是标题党呢!) Description Input 第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子. 第2行包含三个整数 N,M,Q ,表示小H希望生成一个1到 N×M 的排列来填入她 N 行 M 列的棋盘,并且小H在初始的 N×M 次交换操作后,又进行了 Q 次额外的交换操作. 接下来 Q 行,第 i 行包含两个整数 u_i,vi,表示第 i 次额外交换操作将交换 T(ui )和 T(v_i

【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)

3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1442  Solved: 552 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 Output 共T行,每行一个整数表示他最早读到第t页是哪一天.如果他永远不会读到第t页,输出-1. Sa

【BZOJ-3122】随机数生成器 BSGS

3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1362  Solved: 531[Submit][Status][Discuss] Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 Output 共T行,每行一个整数表示他最早读到第t页是

bzoj3122【SDOI2013】随机数生成器

3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 1204  Solved: 471 [Submit][Status][Discuss] Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 Output 共T行,每行一个整数表示他最早读到第t

bzoj3122: [Sdoi2013]随机数生成器

3122: [Sdoi2013]随机数生成器 Description Input Output HINT $ 0 \leqslant a \leqslant P-1,0 \leqslant b \leqslant P-1,2 \leqslant P \leqslant 10^9 $ BSGS裸题 把线性递推式转化为通项公式为 $ x[n] = x1 * A^{n-1} + \frac {B*A^{n-1}} {A-1} = t $ 移项,得: $ (x1 + \frac {B} {A-1}) *

【BZOJ】【3671】【NOI2014】随机数生成器

贪心 嗯……其实生成这个矩阵就是一个$O(n^2)$的模拟 = = 然后?字典序最小?贪心呗= =能选1就选1,然后能选2就选2…… 我们发现,对于矩阵(1,1)~(n,m),假设1的位置是(x,y),那么我们选完1以后,可选的范围变成了:(1,1)~(x,y) & (x,y)~(n,m),也就是将一个矩阵拆成四块,我们可以在左上和右下两块中递归地进行选择…… 那么我们每次选完之后,新的可选的范围其实暴力O(n)维护就可以了,因为我们总共只选$O(n)$次,每次维护的复杂度是$O(n)$,总复杂

2875: [Noi2012]随机数生成器 - BZOJ

DescriptionInput 包含6个用空格分割的m,a,c,X0,n和g,其中a,c,X0是非负整数,m,n,g是正整数. Output 输出一个数,即Xn mod gSample Input 11 8 7 1 5 3 Sample Output2 快速幂+快速乘 1 type 2 matrix=array[1..2,1..2]of int64; 3 var 4 a,c,p,x0,n,g:int64; 5 x,y:matrix; 6 7 function kc(x,y:int64):int