【cs229-Lecture14】主成分分析法

本节课内容:

  • 因子分析

---因子分析中的EM步骤的推导过程

  • 主成份分析:有效地降低维度的方法

因子分析

混合高斯模型的问题

接下来讨论因子分析模型,在介绍因子分析模型之前,先看高斯分布的另一种写法,该
写法是推导因子分析模型的基础。

高斯分布的矩阵写法

因子分析模型

因子分析模型的推导

EM 求解参数


PCA(Principal  Components  Analysis,  主成分分析),也是一种降维方法

主要介绍 PCA(Principal  Components  Analysis,  主成分分析),也是一种降维方法,但是该方法比较直接,只需计算特征向量就可以进行降维了。

引入

PCA 模型的定义

时间: 2024-10-11 06:14:39

【cs229-Lecture14】主成分分析法的相关文章

主成分分析法原理及其python实现

主成分分析法原理及其python实现 前言: 这片文章主要参考了Andrew Ng的Machine Learning课程讲义,我进行了翻译,并配上了一个python演示demo加深理解. 本文主要介绍一种降维算法,主成分分析法,Principal Components Analysis,简称PCA,这种方法的目标是找到一个数据近似集中的子空间,至于如何找到这个子空间,下文会给出详细的介绍,PCA比其他降维算法更加直接,只需要进行一次特征向量的计算即可.(在Matlab,python,R中这个可以

[数学模型]主成分分析法python实现

def pca(dataMat, topNfeat=9999999): #数据矩阵, 输出前topNfeat个feat meanVals = mean(dataMat, axis=0) # 计算平均值 meanRemoved = dataMat - meanVals covMat = cov(meanRemoved, rowvar=0) #计算协方差矩阵 eigVals,eigVects = linalg.eig(mat(covMat)) #特征值, eigValInd = argsort(ei

算法理解之主成分分析法

主成分分析法就是通过正交变换将存在相关性的原始变量变量转换成不相关的新变量,将其中贡献度低的变量舍弃掉,贡献度可以理解为变量的方差,方差越大,贡献度越高,正交变换前后变量存在的信息量是相同的,只是把更多的信息集中起来,舍弃存在少量信息的变量,达到降维的目的. 运用主成分的前提是变量之间存在相关性 主成分分析法的实质的正交变换,正交变换实质就是矩阵的对角化,使得协方差矩阵为对角矩阵,各个变量之间的相关性为0. 如何确定主成分数量,累计贡献度达到90%左右 如何确定主成分所代表的的含义:通过找到荷载

降维之主成分分析法(PCA)

一.主成分分析法的思想 我们在研究某些问题时,需要处理带有很多变量的数据,比如研究房价的影响因素,需要考虑的变量有物价水平.土地价格.利率.就业率.城市化率等.变量和数据很多,但是可能存在噪音和冗余,因为这些变量中有些是相关的,那么就可以从相关的变量中选择一个,或者将几个变量综合为一个变量,作为代表.用少数变量来代表所有的变量,用来解释所要研究的问题,就能从化繁为简,抓住关键,这也就是降维的思想. 主成分分析法(Principal Component Analysis,PCA)就是一种运用线性代

主成分分析法

目录 主成分分析法 一.主成分分析的理解 二.使用梯度上升法求解PCA 三.求数据的前n个主成分 四.将高维数据向低维数据映射 五.scikit-learn中的PCA 六.对真实数据集MNIST使用PCA 七.使用PCA降噪 八.PCA与人脸识别 我是尾巴: 主成分分析法 主成分分析法:(Principle Component Analysis, PCA),是一个非监督机器学习算法,主要用于数据降维,通过降维,可以发现便于人们理解的特征,其他应用:可视化和去噪等. 一.主成分分析的理解 ? 先假

PCA(principal component analysis)主成分分析法

<Aggregating local descriptors into a compact image representation>论文笔记 在论文中,提取到VLAD特征后,要对特征向量进行PCA降维,就是用一个大小为D' * D的矩阵M,对VLAD特征向量x做变换,降维后的vector是x' = Mx,x'的大小是D'维.矩阵M是由原样本的协方差矩阵的D'个特征向量构成. 为什么M要是特征向量的矩阵呢? 根据PRML中的内容,理解如下: 1,Maxinum Variance Formula

R语言学习之主成分分析法的R实践

主成分分析R软件实现程序(一): >d=read.table("clipboard",header=T) #从剪贴板读取数据 >sd=scale(d)  #对数据进行标准化处理 >sd  #输出标准化后的数据和属性信息,把标准化的数据拷贝到剪贴板备用 >d=read.table("clipboard",header=T)  #从剪贴板读取标准化数据 >pca=princomp(d,cor=T)  #主成分分析函数 >screepl

主成分分析法(PCA)答疑

问:为什么要去均值? 1.我认为归一化的表述并不太准确,按统计的一般说法,叫标准化.数据的标准化过程是减去均值并除以标准差.而归一化仅包含除以标准差的意思或者类似做法.2.做标准化的原因是:减去均值等同于坐标的移动,把原始数据点的重心移到和原点重合,这样利于很多表达,比如数据的协方差矩阵可以写成XX',若没有减去均值,则XX‘后面还要减去一些东西(还不明白可以参考多元统计分析的书).除以标准差是为了统一并消除量纲.一个矩阵中有多个向量,有些可能表示了长度,有些表示了重量,除以标准差,才能让它们仅

主成分分析法PCA原理

PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在