Storm日志分析调研及其实时架构

  Storm是使用Clojure语言开发,但是可以在Storm中使用任何语言编写应用程序,所需的只是一个连接到Storm 的架构的适配器。已存在针对 Scala、JRuby、Perl 和 PHP 的适配器,但是还有支持流式传输到 Storm 拓扑结构中的结构化查询语言适配器。

  

Storm 的关键属性
Storm 实现的一些特征决定了它的性能和可靠性的。Storm 使用 ZeroMQ 传送消息,这就消除了中间的排队过程,使得消息能够直接在任务自身之间流动。在消息的背后,是一种用于序列化和反序列化 Storm 的原语类型的自动化且高效的机制。
Storm 的一个最有趣的地方是它注重容错和管理。Storm 实现了有保障的消息处理,所以每个元组都会通过该拓扑结构进行全面处理;如果发现一个元组还未处理,它会自动从喷嘴处重放。Storm 还实现了任务级的故障检测,在一个任务发生故障时,消息会自动重新分配以快速重新开始处理。Storm 包含比 Hadoop 更智能的处理管理,流程会由监管员来进行管理,以确保资源得到充分使用。
时间: 2024-10-11 04:26:43

Storm日志分析调研及其实时架构的相关文章

分布式实时日志分析解决方案ELK部署架构

一.概述 ELK 已经成为目前最流行的集中式日志解决方案,它主要是由Beats.Logstash.Elasticsearch.Kibana等组件组成,来共同完成实时日志的收集,存储,展示等一站式的解决方案.本文将会介绍ELK常见的架构以及相关问题解决. 1. Filebeat:Filebeat是一款轻量级,占用服务资源非常少的数据收集引擎,它是ELK家族的新成员,可以代替Logstash作为在应用服务器端的日志收集引擎,支持将收集到的数据输出到Kafka,Redis等队列. 2. Logstas

分布式实时日志分析解决方案 ELK 部署架构

一.前言 ELK 已经成为目前最流行的集中式日志解决方案,它主要是由Beats.Logstash.Elasticsearch.Kibana等组件组成,来共同完成实时日志的收集,存储,展示等一站式的解决方案.本文将会介绍ELK常见的架构以及相关问题解决. Filebeat:Filebeat是一款轻量级,占用服务资源非常少的数据收集引擎,它是ELK家族的新成员,可以代替Logstash作为在应用服务器端的日志收集引擎,支持将收集到的数据输出到Kafka,Redis等队列.Logstash:数据收集引

千亿级数量下日志分析系统的技术架构选型

?? 随着数据已经逐步成为一个公司宝贵的财富,大数据团队在公司往往会承担更加重要的角色.大数据团队往往要承担数据平台维护.数据产品开发.从数据产品中挖掘业务价值等重要的职责.所以对于很多大数据工程师,如何根据业务需求去选择合适的大数据组件,做合适的大数据架构工作就是日常工作中最常遇到的问题.在这里根据七牛云在日增千亿级的日志分析工作,和大家分享一下大数据技术架构选型的一些经验.? 大数据架构师在关注什么 ?在一个大数据团队中,大数据架构师主要关注的核心问题就是技术架构选型问题.架构选型问题一般会

(一个)kafka-jstorm集群实时日志分析 它 ---------kafka实时日志处理

package com.doctor.logbackextend; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import kafka.consumer.Consumer; import kafka.consumer.ConsumerConfig; import kafka.consumer.ConsumerIterator; import

(一)kafka-jstorm集群实时日志分析 之 ---------kafka实时日志处理

package com.doctor.logbackextend; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import kafka.consumer.Consumer; import kafka.consumer.ConsumerConfig; import kafka.consumer.ConsumerIterator; import

基于AWS的web日志分析系统架构

AWS提供的服务和基础设施能够在云环境中建设可靠,容错和高可用的Web应用程序.在生产环境中,这些应用产生大量的日志信息.这些数据是任何公司运营web应用程序的重要知识来源,分析日志可以揭示信息,如交通模式,用户行为,市场资料等. 然而,作为Web应用程序的增长和的访问者数量的增加,存储和分析网络日志变得越来越具有挑战性.下图展示了如何使用AWS构建一个可扩展且可靠的大规模日志分析平台.该架构的核心组件是AmazonElastic MapReduce,  这是一个使分析师能够经济方便地进行大数据

NAS日志分析用户指南

摘要: NAS"日志分析"新功能,旨在帮助用户更好地监控文件系统资源.通过该功能,用户可以方便地跟踪系统性能问题,记录文件系统上的数据操作情况,审计文件删除等相关操作,有效监控各区域内文件系统资源大盘和明细信息,实时报警等 NAS文件存储是阿里云提供给用户的云上高性能文件系统存储服务.数据安全和性能是用户对文件存储服务最关注的两大因素,经常有用户反映以下这些情况: - 我想查看自己的文件存储服务性能指标(吞吐,iops等等) - 我想了解自己的文件系统内数据操作分布(读.写.新建.删除

实时海量日志分析系统的架构设计、实现以及思考

1 序 对ETL系统中数据转换和存储操作的相关日志进行记录以及实时分析有助于我们更好的观察和监控ETL系统的相关指标(如单位时间某些操作的处理时间),发现系统中出现的缺陷和性能瓶颈. 由于需要对日志进行实时分析,所以Storm是我们想到的首个框架.Storm是一个分布式实时计算系统,它可以很好的处理流式数据.利用storm我们几乎可以直接实现一个日志分析系统,但是将日志分析系统进行模块化设计可以收到更好的效果.模块化的设计至少有两方面的优点: 模块化设计可以使功能更加清晰.整个日志分析系统可以分

Storm实时日志分析实战

项目背景 最近公司做一个项目,用户需要对网站访问者的广告点击/浏览记录进行实时统计分析,分析结果存入数据库,输出报表.我们采用了Kafka+Storm+Zookeeper的解决方案.之前没有接触过,经过一段时间的研究,最终完成了项目.接下来的内容我将介绍我们的解决方案.供大家参考.我们的系统结构如下: 总体结构介绍 业务系统把点击/浏览广告业务日志统一按规定的格式发送到Kafka集群中,不同的业务日志可以分别发送给Kafka不同的主题.Storm集群中运行了我们的实时统计拓扑,该统计拓扑分别从K