RDD原理与详解

RDD详解

RDD(Resilient Distributed Datasets弹性分布式数据集),是spark中最重要的概念,可以简单的把RDD理解成一个提供了许多操作接口的数据集合,和一般数据集不同的是,其实际数据分布存储于一批机器中(内存或磁盘中)。当然,RDD肯定不会这么简单,它的功能还包括容错、集合内的数据可以并行处理等。图1是RDD类的视图。

图1

一个简单的例子

下面是一个实用scala语言编写的spark应用(摘自Apache Spark 社区https://spark.apache.org/docs/latest/quick-start.html)。

/* SimpleApp.scala */

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkConf

object SimpleApp {

def main(args: Array[String]) {

val logFile = "YOUR_SPARK_HOME/README.md" // Should be some file on your system

val conf = new SparkConf().setAppName("Simple Application") //设置程序名字

val sc = new SparkContext(conf)

val logData = sc.textFile(logFile, 2).cache() //加载文件为RDD,并缓存

val numAs = logData.filter(line => line.contains("a")).count()//包含a的行数

val numBs = logData.filter(line => line.contains("b")).count()//包含b的行数

println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))

}

}

这个程序只是简单的对输入文件README.md包含‘a‘和‘b‘的行分别计数。当然如果你想运行这个程序,需要把YOUR_SPARK_HOME替换为Spark的安装目录。程序中定义了一个RDD:logData,并调用cache,把RDD数据缓存在内存中,这样能防止重复加载文件。filter是RDD提供的一种操作,它能过滤出符合条件的数据,count是RDD提供的另一个操作,它能返回RDD数据集中的记录条数。

RDD操作类型

上述例子介绍了两种RDD的操作:filter与count;事实上,RDD还提供了许多操作方法,如map,groupByKey,reduce等操作。RDD的操作类型分为两类,转换(transformations),它将根据原有的RDD创建一个新的RDD;行动(actions),对RDD操作后把结果返回给driver。例如,map是一个转换,它把数据集中的每个元素经过一个方法处理后返回一个新的RDD;而reduce则是一个action,它收集RDD的所有数据后经过一些方法的处理,最后把结果返回给driver。

RDD的所有转换操作都是lazy模式,即Spark不会立刻计算结果,而只是简单的记住所有对数据集的转换操作。这些转换只有遇到action操作的时候才会开始计算。这样的设计使得Spark更加的高效,例如,对一个输入数据做一次map操作后进行reduce操作,只有reduce的结果返回给driver,而不是把数据量更大的map操作后的数据集传递给driver。

下面分别是transformations和action类型的操作。

Transformations类型的操作

Action类型的操作

更多RDD的操作描述和编程方法请参考社区文档:https://spark.apache.org/docs/latest/programming-guide.html

RDD底层实现原理

RDD是一个分布式数据集,顾名思义,其数据应该分部存储于多台机器上。事实上,每个RDD的数据都以Block的形式存储于多台机器上,下图是Spark的RDD存储架构图,其中每个Executor会启动一个BlockManagerSlave,并管理一部分Block;而Block的元数据由Driver节点的BlockManagerMaster保存。BlockManagerSlave生成Block后向BlockManagerMaster注册该Block,BlockManagerMaster管理RDD与Block的关系,当RDD不再需要存储的时候,将向BlockManagerSlave发送指令删除相应的Block。

图2 RDD存储原理

RDD cache的原理

RDD的转换过程中,并不是每个RDD都会存储,如果某个RDD会被重复使用,或者计算其代价很高,那么可以通过显示调用RDD提供的cache()方法,把该RDD存储下来。那RDD的cache是如何实现的呢?

RDD中提供的cache()方法只是简单的把该RDD放到cache列表中。当RDD的iterator被调用时,通过CacheManager把RDD计算出来,并存储到BlockManager中,下次获取该RDD的数据时便可直接通过CacheManager从BlockManager读出。

RDD dependency与DAG

RDD提供了许多转换操作,每个转换操作都会生成新的RDD,这是新的RDD便依赖于原有的RDD,这种RDD之间的依赖关系最终形成了DAG(Directed Acyclic Graph)。

RDD之间的依赖关系分为两种,分别是NarrowDependency与ShuffleDependency,其中ShuffleDependency为子RDD的每个Partition都依赖于父RDD的所有Partition,而NarrowDependency则只依赖一个或部分的Partition。下图的groupBy与join操作是ShuffleDependency,map和union是NarrowDependency。

图3 RDD dependency

RDD partitioner与并行度

每个RDD都有Partitioner属性,它决定了该RDD如何分区,当然Partition的个数还将决定每个Stage的Task个数。当前Spark需要应用设置Stage的并行Task个数(配置项为:spark.default.parallelism),在未设置的情况下,子RDD会根据父RDD的Partition决定,如map操作下子RDD的Partition与父Partition完全一致,Union操作时子RDD的Partition个数为父Partition个数之和。

如何设置spark.default.parallelism对用户是一个挑战,它会很大程度上决定Spark程序的性能。

时间: 2024-08-04 05:55:06

RDD原理与详解的相关文章

LVS-DR工作原理图文详解

为了阐述方便,我根据官方原理图另外制作了一幅图,如下图所示:VS/DR的体系结构: 我将结合这幅原理图及具体的实例来讲解一下LVS-DR的原理,包括数据包.数据帧的走向和转换过程. 官方的原理说明:Director接收用户的请求,然后根据负载均衡算法选取一台realserver,将包转发过去,最后由realserver直接回复给用户. 实例场景设备清单: 说明:我这里为了方便,client是与vip同一网段的机器.如果是外部的用户访问,将client替换成gateway即可,因为IP包头是不变的

MapReduce工作原理图文详解 (炼数成金)

MapReduce工作原理图文详解 1.Map-Reduce 工作机制剖析图: 1.首先,第一步,我们先编写好我们的map-reduce程序,然后在一个client 节点里面进行提交.(一般来说可以在Hadoop集群里里面的任意一个节点进行,只要该节点装了Hadoop并且连入了Hadoop集群) 2.job client 在收到这个请求以后呢,会找到JobTracker并且请求一个作业ID(Job ID).(根据我们的核心配置文件,可以很轻易的找到JobTracker) 3.通过HDFS 系统把

ln命令总结,软链接&硬链接&文件删除原理画图详解

ln命令总结,软链接&硬链接&文件删除原理画图详解

从浏览器打开网址到请求到网页内容超细原理过程详解(免费)

从浏览器打开网址到请求到网页内容超细原理过程详解 史上最牛逼相关知识学员讲解! 看完了不服来战! http://edu.51cto.com/course/course_id-6075.html 长江后浪来了...100米高大浪! 最牛逼老男孩教育28期学员开班2个月左右的分享讲解,不看不知道,一看吓尿你! 运维Q群385168604 架构师Q群390642196 PythonQ群29215534大数据Q群421358633

spark2.x由浅入深深到底系列六之RDD java api详解三

学习任何spark知识点之前请先正确理解spark,可以参考:正确理解spark 本文详细介绍了spark key-value类型的rdd java api 一.key-value类型的RDD的创建方式 1.sparkContext.parallelizePairs JavaPairRDD<String, Integer> javaPairRDD =         sc.parallelizePairs(Arrays.asList(new Tuple2("test", 3

spark2.x由浅入深深到底系列六之RDD java api详解四

学习spark任何的知识点之前,先对spark要有一个正确的理解,可以参考:正确理解spark 本文对join相关的api做了一个解释 SparkConf conf = new SparkConf().setAppName("appName").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); JavaPairRDD<Integer, Integer> javaPa

spark2.x由浅入深深到底系列六之RDD java api详解二

package com.twq.javaapi.java7; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.funct

iOS---NSAutoreleasePool自动释放原理及详解

当您向一个对象发送一个autorelease消息时,Cocoa就会将该对象的一个引用放入到最新的自动释放池.它仍然是个正当的对象,因此自动释放池 定义的作用域内的其它对象可以向它发送消息.当程序执行到作用域结束的位置时,自动释放池就会被释放,池中的所有对象也就被释放. 1. ojc-c 是通过一种"referring counting"(引用计数)的方式来管理内存的, 对象在开始分配内存(alloc)的时候引用计数为一,以后每当碰到有copy,retain的时候引用计数都会加一, 每当

GO的并发之道-Goroutine调度原理&amp;Channel详解

并发(并行),一直以来都是一个编程语言里的核心主题之一,也是被开发者关注最多的话题:Go语言作为一个出道以来就自带 『高并发』光环的富二代编程语言,它的并发(并行)编程肯定是值得开发者去探究的,而Go语言中的并发(并行)编程是经由goroutine实现的,goroutine是golang最重要的特性之一,具有使用成本低.消耗资源低.能效高等特点,官方宣称原生goroutine并发成千上万不成问题,于是它也成为Gopher们经常使用的特性. 一.goroutine简介 Golang被极度赞扬的是它