学长一晚上的耐心讲解,使我明白区间DP这么高级的东西,还是挺容易的。也就是在一段区间内的动态规划。
下面用例题进行总结。
例题:石子归并。
描述 有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,并将新的一堆石子数记为该次合并的得分。
给组测试数据
输入 4 表示有4堆石子
4 4 5 9 表示每堆石子的个数
输出 54 表示最大的得分
分析:主要思想就是一个一个累加:4 4 5 9 先看下去是我想知道dp[i][j]的最大值,i表示起始位置,j表示终止位置,所以我肯定是想求出dp[1][4]间的最大值但是我从1到4可是如图这三种截取方法,所以我先从小的开始记录。
dp[1][1]=4;dp[2][2]=4;dp[3][3]=5;dp[4][4]=9。然后我在长度为2的时候记录,dp[1][2]=4+4=8,dp[2][3]=8+5=14;dp[3][4]=14+9=23;这样加起来的值就是8+14+23=45;但是如果我反过来呢?dp[1][2]=5+9=14;dp[2][3]=14+4=18;dp[3][4]=18+4=22;这样加起来的值就是14+18+22=54。很明显,54就是所求的最大值。
如图,如果我相求圈着的这个三个的值,我完全可以有图上这两种分割,并且分割出来的值是已经知道的了。
动态规划的思想:先两两合并,在三三合并,最后再NN合并,在合并过程中,较大的区间可以拆分成已经的小区间进行计算,省时又省力。比如,我可以在三三合并的时候可以拆分成一一还有二三相加。即把当前阶段的合并方法细分成前一阶段已计算出的方法,选择其中的最优方案。
具体来说我们应该定义一个数组dp[i,j]用来表示合并方法,i表示从编号为i的石头开始合并,j表示所求区间的结尾,sum表示的是石头的数量。
对于上面的例子来说,
第一阶段:dp[1][1],dp[2][2],dp[3][3],dp[4][4] 因为一开始还没有合并,所以这些值应该全部为0。
第二阶段:两两合并过程如下,其中sum(i,j)表示石头的数量,即从i开始数j个数的和
dp[1,2]=dp[1,1]+dp[2,2]+sum[1,2];
dp[2,3]=dp[2,2]+dp[3,3]+sum[2,3];
dp[3,4]=dp[3,3]+dp[4,4]+sum[4,4];
第三阶段:三三合并可以拆成两两合并,拆分方法有两种,前两个为一组或后两个为一组
dp[1,3]=dp[1,2]+dp[3,3]+sum[1,3]或dp[1,3]=dp[1,1]+dp[2,3]+sum[1,3];取其最优
dp[2,4]=dp[2,2]+dp[3,4]+sun[2,4]或dp[2,4]=dp[2,3]+dp[3,3]+sum[2,4];取其最优
第四阶段:四四合并的拆分方法用三种,同理求出三种分法的得分,取其最优即可。以后第五阶段、第六阶段依次类推,最后在第六阶段中找出最优答案即可。
动态方程为dp[i][j]=dp[i][k]+dp[k+1][j]+sum[i][j];
参考代码。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 5 using namespace std; 6 7 //#define MAX 999999 8 9 int main () 10 { 11 int dp[210][210],sum[210][210],a[210]; 12 int n; 13 while(~scanf("%d",&n)) 14 { 15 //memset(dp,MAX,sizeof(dp)); 16 for (int i=1; i<=n; i++) 17 scanf("%d",&a[i]); 18 for (int i=1; i<=n; i++) 19 { 20 dp[i][i]=0;//初始化为0 21 sum[i][i]=a[i];//将每堆石子的个数赋值进来 22 } 23 for (int len=1; len<n; len++)//按长度从小到大枚举 24 { 25 for (int i=1; i<=n&&i+len<=n; i++)//i表示开始位置 26 { 27 int j=len+i; //j表示长度为len的一段区间的结束位置 28 for (int k=i; k<j; k++) //用k来表示分割区间 29 { 30 sum[i][j]=sum[i][k]+sum[k+1][j]; 31 if (dp[i][j]<dp[i][k]+dp[k+1][j]+sum[i][j]) 32 dp[i][j]=dp[i][k]+dp[k+1][j]+sum[i][j]; 33 //cout<<i<<" "<<j<<" "<<sum[i][j]<<" "<<k<<" "<<dp[i][j]<<endl; 34 } 35 } 36 } 37 cout<<dp[1][n]<<endl; 38 } 39 return 0; 40 }
http://acm.nyist.net/JudgeOnline/problem.php?pid=737
这是一道类似的题目,和上述代码有点区别,把7,15,31行修改一下即可哦~