最近公共祖先LCA【模板】

Tarjan-LCA算法:

对于每一点u:

1.建立以u为代表元素的集合。

2.遍历与u相连的节点v,如果没有被访问过,对于v使用Tarjan-LCA算法,结束后,将v的集合并入u的集合。

3.对于与节点u相关的询问(u,v),如果v被访问过,则结果就是v所在集合的所代表的元素。

求(u,v)的最近公共祖先节点,则询问时调用QEdges[k].lca = find(QEdges[k].to);

求(u,v)在树上的距离,Dist(u,v) = Dist(1,u) + Dist(1,v) - 2*Dist( 1,LCA(u,v) ),即u到根结点的距离 + v到根结点的距离 - 2*(u,v)最近公共祖先到根结点的距离,则询问时调用QEdges[k].lca = Dist[u] + Dist[QEdges[k].to] - 2*Dist[find(QEdges[k].to)];

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN = 80080;
const int MAXQ = 20020;

int father[MAXN],Head[MAXN],QHead[MAXN],Dist[MAXN];
//Head[]和Eges[]用来存储原图;QHead[]和QEdges[]用来存储询问
struct EdgeNode
{
    int to;
    int next;
    int lca;
}Edges[MAXN],QEdges[MAXN];

int find(int x)
{
    if(x != father[x])
        father[x] = find(father[x]);
    return father[x];
}

bool vis[MAXN];

void LCA(int u)
{
    father[u] = u;
    vis[u] = true;
    for(int k = Head[u]; k != -1; k = Edges[k].next)
    {
        if(!vis[Edges[k].to])
        {
            Dist[Edges[k].to] = Dist[u] + Edges[k].lca;
            LCA(Edges[k].to);
            father[Edges[k].to] = u;
        }
    }

    for(int k = QHead[u]; k != -1; k = QEdges[k].next)
    {
        if(vis[QEdges[k].to])
        {
            //QEdges[k].lca = find(QEdges[k].to);
            QEdges[k].lca = Dist[u] + Dist[QEdges[k].to] - 2*Dist[find(QEdges[k].to)];
            QEdges[k^1].lca = QEdges[k].lca;
        }
    }
}

int main()
{
    int N,M,K,u,v,w,a,b;
    while(~scanf("%d%d",&N,&M))
    {
        memset(father,0,sizeof(father));
        memset(Head,-1,sizeof(Head));
        memset(QHead,-1,sizeof(QHead));
        memset(vis,false,sizeof(vis));
        memset(Edges,0,sizeof(Edges));
        memset(QEdges,0,sizeof(QEdges));
        memset(Dist,0,sizeof(Dist));
        int id = 0;
        for(int i = 0; i < M; ++i)//插入图的M条边
        {
            scanf("%d%d%d",&u,&v,&w);
            Edges[id].to = v;
            Edges[id].lca = w;
            Edges[id].next = Head[u];
            Head[u] = id++;
            Edges[id].to = u;
            Edges[id].lca = w;
            Edges[id].next = Head[v];
            Head[v] = id++;
        }   //(u,v)和(v,u)都要存,表示双向边
        scanf("%d",&K);//K条询问
        int iq = 0;
        for(int i = 0; i < K; ++i)
        {
            scanf("%d%d",&a,&b);
            QEdges[iq].to = b;
            QEdges[iq].next = QHead[a];
            QHead[a] = iq++;
            QEdges[iq].to = a;
            QEdges[iq].next = QHead[b];
            QHead[b] = iq++;
        }   //同理(u,v)和(v,u)都要存,但是询问时只对一条边回答
        LCA(1); //跟结点。
        for(int i = 0; i < iq; i+=2)    //回答询问
            printf("%d\n",QEdges[i].lca);
    }

    return 0;
}
时间: 2024-11-05 21:35:13

最近公共祖先LCA【模板】的相关文章

最近公共祖先lca模板

void dfs(int x,int root){//预处理fa和dep数组 fa[x][0]=root; dep[x]=dep[root]+1; for(int i=1;(1<<i)<dep[x];i++) fa[x][i]=fa[fa[x][i-1]][i-1]; for(int i=0;i<ve[x].size();i++)dfs(ve[x][i],x); } int lca(int a,int b){//计算两个节点的最近公共祖先 if(dep[a]>dep[b])s

最近公共祖先 LCA 模板

算法步骤 时间复杂度 \(O((n+q)\log n)\),\(n\)是问题规模,\(q\)是询问个数 倍增法求\(LCA\) \(fa[i,j]\)表示从\(i\)开始向上走\(2^j\)所能到达的节点 \((0 \leq j\leq\log n)\) \(depth[i]\)表示节点\(i\)的深度 哨兵:如果从\(i\)开始跳\(2^j\)步会跳过根节点,那么\(fa[i,2^j]=0,depth[0]=0\) 先将两个节点跳到同一层 让两个节点同时往上跳,一直跳到他们最近公共祖先的下一层

最近公共祖先(LCA)问题

描述 对于有根树T的两个节点u和v,最近公共祖先LCA(T,u,v)表示一个节点x满足x是u,v的公共祖先且x的深度尽可能大. 算法 求解LCA问题主要有三种解法,分别是暴力搜索,Tanjar算法,最后一种是转化为RMQ问题,用DFS+ST算法来求解 暴力搜索 如果数据量不大的时候可以采用暴力搜索法.先将节点u的祖先节点全部标记出来,然后顺着节点v沿着父亲节点的方向向上遍历,直到遍历到一个被标记的节点,这个节点即为所求节点.或者分别获取u,v到根节点的路径P1,P2,可以将这两条路径看做两个两个

POJ 1470 Closest Common Ancestors【最近公共祖先LCA】

题目链接:http://poj.org/problem?id=1470 题目大意:给出一棵树,再给出若干组数(a,b),输出节点a和节点b的最近公共祖先(LCA) 就是很裸的LCA,但是我用的是<挑战程序设计竞赛>上的"基于二分搜索的算法求LCA",我看网上用的都是tarjan算法.但是我的代码不知道为什么提交上去 wrong answer,自己想的很多测试数据也都和题解结果一样,不知道错在哪里,所以把代码保存一下,留待以后解决...... 如果读者有什么建议,希望提出来,

最近公共祖先LCA(Tarjan算法)的思考和算法实现——转载自Vendetta Blogs

最近公共祖先LCA(Tarjan算法)的思考和算法实现 LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了flase...看的时候注意一下! //还有...这篇字比较多 比较杂....毕竟是第一次嘛 将就将就 后面会重新改!!! 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先

【C++】最近公共祖先LCA(Tarjan离线算法)&amp;&amp; 洛谷P3379LCA模板

1.前言 首先我们介绍的算法是LCA问题中的离线算法-Tarjan算法,该算法采用DFS+并查集,再看此算法之前首先你得知道并查集(尽管我相信你如果知道这个的话肯定是知道并查集的),Tarjan算法的优点在于相对稳定,时间复杂度也比较居中,也很容易理解(个人认为). 2.思想 下面详细介绍一下Tarjan算法的思想: 1.任选一个点为根节点,从根节点开始. 2.遍历该点u所有子节点v,并标记这些子节点v已被访问过. 3.若是v还有子节点,返回2,否则下一步. 4.合并v到u上. 5.寻找与当前点

[模板]最近公共祖先LCA

本人水平有限,题解不到为处,请多多谅解 本蒟蒻谢谢大家观看 题目:传送门 倍增求LCA模板 code: #include<bits/stdc++.h> #pragma GCC optimize(3) using namespace std; int n,q,a,b,tot,m; int nxt[1000010],head[1000010],ver[1000010],dep[1000010],f[1000010][21]; //设f[x,k]表示x的2^k辈祖先,即从x向根节点走2^k步到达的节

求最近公共祖先(LCA)板子 x

LCA目前比较流行的算法主要有tarjian,倍增和树链剖分 1)tarjian 是一种离线算法,需要提前知道所有询问对 算法如下 1.读入所有询问对(u,v),并建好树(建议邻接表) 2.初始化每个节点各属一个并查集,都指向自己 3.对整棵树进行dfs(深度优先搜索)遍历 每处理到一个新节点(u)时看他的另一半(询问对象v)是否visit过,如果visit过了,则这组询问对的lca即v的并查集的根节点,若没有visit过,则继续向下深搜,该节点记为已visit 每当回溯的时候都将子节点的并查集

最近公共祖先 LCA Tarjan算法

来自:http://www.cnblogs.com/ylfdrib/archive/2010/11/03/1867901.html 对于一棵有根树,就会有父亲结点,祖先结点,当然最近公共祖先就是这两个点所有的祖先结点中深度最大的一个结点. 0 | 1 /   \ 2      3 比如说在这里,如果0为根的话,那么1是2和3的父亲结点,0是1的父亲结点,0和1都是2和3的公共祖先结点,但是1才是最近的公共祖先结点,或者说1是2和3的所有祖先结点中距离根结点最远的祖先结点. 在求解最近公共祖先为问