Scalaz(38)- Free :Coproduce-Monadic语句组合

很多函数式编程爱好者都把FP称为Monadic Programming,意思是用Monad进行编程。我想FP作为一种比较成熟的编程模式,应该有一套比较规范的操作模式吧。因为Free能把任何F[A]升格成Monad,所以Free的算式(AST)、算法(Interpreter)关注分离(separation of concern)模式应该可以成为一种规范的FP编程模式。我们在前面的几篇讨论中都涉及了一些AST的设计和运算,但都是一些功能单一,离散的例子。如果希望通过Free获取一个完整可用的程序,就必须想办法把离散的Free
AST组合成一体运算。我们先从单一的Free AST例子开始:

import scalaz._
import Scalaz._
import scala.language.higherKinds
import scala.language.implicitConversions
object FreeModules {
  object FreeInteract {
    trait Interact[+A]
    type FreeInteract[A] = Free.FreeC[Interact,A]
    object Interact {
      case class Ask(prompt: String) extends Interact[String]
      case class Tell(msg: String) extends Interact[Unit]
      implicit def interactToFreeC[A](ia: Interact[A]) = Free.liftFC(ia)
      object InteractConsole extends (Interact ~> Id) {
        def apply[A](ia: Interact[A]): Id[A] = ia match {
          case Ask(p) => println(p); readLine
          case Tell(m) => println(m)
        }
      }
    }
    import Interact._
    val interactScript = for {
      first <- Ask("What's your first name?")
      last <- Ask("What's your last name?")
      _ <- Tell(s"Hello ${first} ${last}, nice to meet you!")
    } yield ()
  }
}

这是一个我们在前面讨论中重复描述几次的简单交互例子,包括了ADT、AST和Interpreter。我们可以直接运行这个程序:

object freePrgDemo extends App {
  import FreeModules._
  import FreeInteract._
  import Interact._
  Free.runFC(interactScript)(InteractConsole)
}

运算结果如下:

What's your first name?
Tiger
What's your last name?
Chan
Hello Tiger Chan, nice to meet you!

就是简单的两句界面提示和键盘输入,然后提示输入结果,没什么意义。作为测试,我们也可以模拟Console交互:用Map[String,String]来模拟Map[提问,回答],然后把这个Map提供给Interpreter,返回结果(List[String],A),其中List[String]是运行跟踪记录,A是模拟的键盘输入:

      type InteractMapTester[A] = Map[String,String] => (List[String], A)
      implicit val mapTesterMonad = new Monad[InteractMapTester] {
         def point[A](a: => A) = _ => (List(), a)
         def bind[A,B](ia: InteractMapTester[A])(f: A => InteractMapTester[B]): InteractMapTester[B] =
           m => {
             val (o1,a1) = ia(m)
             val (o2,a2) = f(a1)(m)
             (o1 ++ o2, a2)
           }
      }
      object InteractTesterMap extends (Interact ~> InteractMapTester) {
        def apply[A](ia: Interact[A]): InteractMapTester[A] = ia match {
          case Ask(p) => { m => (List(), m(p)) } //m(p)返回提问对应的答案作为键盘输入
          case Tell(s) => { m => (List(s), ()) } //List(s)在bind函数中的o1++o2形成跟踪记录
                                                 //在运算AST时就会调用InteractMapTester的bind函数
        }
      }

使用模拟Console的Interpreter来运行:

object freePrgDemo extends App {
  import FreeModules._
  import FreeInteract._
  import Interact._
  //Free.runFC(interactScript)(InteractConsole)
    val result = Free.runFC(interactScript)(InteractTesterMap).apply(
    Map(
    "What's your first name?" -> "tiger",
    "What's your last name?" -> "chan"
  ))
  println(result)
  }
//产生以下输出结果
(List(Hello tiger chan, nice to meet you!),())

从mapTesterMonad定义中的bind看到了这句:o1++o2,是Logger的典型特征。那么用Writer能不能实现同等效果呢?我们先看看WriterT:

final case class WriterT[F[_], W, A](run: F[(W, A)]) { self =>
...

实际上这个W就可以满足Logger的功能,因为在WriterT的flatMap中实现了W|+|W:

  def flatMap[B](f: A => WriterT[F, W, B])(implicit F: Bind[F], s: Semigroup[W]): WriterT[F, W, B] =
    flatMapF(f.andThen(_.run))

  def flatMapF[B](f: A => F[(W, B)])(implicit F: Bind[F], s: Semigroup[W]): WriterT[F, W, B] =
    writerT(F.bind(run){wa =>
      val z = f(wa._2)
      F.map(z)(wb => (s.append(wa._1, wb._1), wb._2))
    })

那么如何把Map[提问,回答]传人呢?我们可以通过WriterT[F[_],W,A]的F[]来实现这一目的:

      type WriterTF[A] = Map[String,String] => A
      type InteractWriterTester[A] = WriterT[WriterTF,List[String],A]

然后我们可以用WriterT的参数run来传人Map[String,String]:run:WriterTF[(W,A)] == Map[String,String]=>(W,A)。

以下是用WriterT实现的Interpreter版本:

      type WriterTF[A] = Map[String,String] => A
      type InteractWriterTester[A] = WriterT[WriterTF,List[String],A]
      def testerToWriter[A](f: Map[String,String] => (List[String], A)) =
        WriterT[WriterTF,List[String],A](f)
      implicit val writerTesterMonad = WriterT.writerTMonad[WriterTF, List[String]]
      object InteractTesterWriter extends (Interact ~> InteractWriterTester) {
        def apply[A](ia: Interact[A]): InteractWriterTester[A] = ia match {
          case Ask(p) => testerToWriter { m => (List(), m(p)) }
          case Tell(s) => testerToWriter { m => (List(s), ())}
        }
      }

我们可以这样运行:

object freePrgDemo extends App {
  import FreeModules._
  import FreeInteract._
  import Interact._
  //Free.runFC(interactScript)(InteractConsole)
  //val result = Free.runFC(interactScript)(InteractTesterMap).apply(
  val result = Free.runFC(interactScript)(InteractTesterWriter).run(
    Map(
    "What's your first name?" -> "tiger",
    "What's your last name?" -> "chan"
  ))
  println(result)

}

我们再设计另一个用户登录Login的例子:

  object FreeUserLogin {
    import Dependencies._
    trait UserLogin[+A]
    type FreeUserLogin[A] = Free.FreeC[UserLogin,A]
    object UserLogin {
      case class Login(user: String, pswd: String) extends UserLogin[Boolean]
      implicit def loginToFree[A](ul: UserLogin[A]) = Free.liftFC(ul)
      type LoginService[A] = Reader[PasswordControl,A]
      object LoginInterpreter extends (UserLogin ~> LoginService) {
        def apply[A](ul: UserLogin[A]): LoginService[A] = ul match {
          case Login(u,p) => Reader( cr => cr.matchPassword(u, p))
        }
      }
    }
    import UserLogin._
    val loginScript = for {
      b <- Login("Tiger","1234")
    } yield b
  }

这个例子里只有Login一个ADT,它的功能是把输入的User和Password与一个用户登录管理系统内的用户身份信息进行验证。由于如何进行用户密码验证不是这个ADT的功能,它可能涉及另一特殊功能系统的调用,刚好用来做个Reader依赖注入示范。以下是这项依赖定义:

object Dependencies {
  trait PasswordControl {
    type User = String
    type Password = String
    val pswdMap: Map[User, Password]
    def matchPassword(u: User, p: Password): Boolean
  }
}

对loginScript进行测试运算时必须先获取PasswordControl实例,然后注入运算:

  import Dependencies._
  import FreeUserLogin._
  import UserLogin._
  object Passwords extends PasswordControl {  //依赖实例
     val pswdMap = Map (
       "Tiger" -> "1234",
       "John" -> "0332"
     )
     def matchPassword(u: User, p: Password) = pswdMap.getOrElse(u, p+"!") === p
  }
  val result = Free.runFC(loginScript)(LoginInterpreter).run(Passwords)  //注入依赖
  println(result)

不过即使能够运行,loginScsript的功能明显不完整,还需要像Interact那样的互动部分来获取用户输入信息。那么我们是不是考虑在ADT层次上把Interact和UserLogin合并起来,像这样:

      case class Ask(prompt: String) extends Interact[String]
      case class Tell(msg: String) extends Interact[Unit]
      case class Login(user: String, pswd: String) extends Interact[Boolean]

明显这是可行的。但是,Interact和Login被紧紧捆绑在了一起形成了一个新的ADT。如果我们设计另一个同样需要互动的ADT,我们就需要重复同样的Interact功能设计,显然这样做违背了FP的原则:从功能单一的基本计算开始,按需要对基本函数进行组合实现更复杂的功能。Interact和UserLogin都是基础ADT,从编程语言角度描述Interact和UserLogin属于两种类型的编程语句。我们最终需要的AST是这样的:

  val interLogin: Free[???, A] = for {
    user <- Ask("Enter User ID:")  //Free[Interact,A]
    pswd <- Ask("Enter Password:") //Free[Interact,A]
    ok <- Login(user,pswd) //Free[UserLogin,A]
  } yield ok

不过明显类型对不上,因为Interact和UserLogin是两种语句。scalaz的Coproduct类型可以帮助我们实现两种Monadic语句的语义(sematics)合并。Coproduct是这样定义的:scalaz/Coproduct.scala

/** `F` on the left, and `G` on the right, of [[scalaz.\/]].
  *
  * @param run The underlying [[scalaz.\/]]. */
final case class Coproduct[F[_], G[_], A](run: F[A] \/ G[A]) {
  import Coproduct._

  def map[B](f: A => B)(implicit F: Functor[F], G: Functor[G]): Coproduct[F, G, B] =
    Coproduct(run.bimap(F.map(_)(f), G.map(_)(f)))
...

从run:F[A]\/G[A]可以理解Coproduct是两种语句F,G的联合(union)。在我们上面的例子里我们可以用下面的表达方式代表Interact和UserLogin两种语句的联合(union):

  type InteractLogin[A] = Coproduct[Interact,UserLogin,A]

这是一个语义更广泛的类型:包含了Interact和UserLogin语义。我们可以用Inject类型来把Interact和UserLogin语句集“注入”到一个更大的句集。Inject是这样定义的:scalaz/Inject.scala

/**
 * Inject type class as described in "Data types a la carte" (Swierstra 2008).
 *
 * @see [[http://www.staff.science.uu.nl/~swier004/Publications/DataTypesALaCarte.pdf]]
 */
sealed abstract class Inject[F[_], G[_]] {
  def inj[A](fa: F[A]): G[A]
  def prj[A](ga: G[A]): Option[F[A]]
}

sealed abstract class InjectInstances {
  implicit def reflexiveInjectInstance[F[_]] =
    new Inject[F, F] {
      def inj[A](fa: F[A]) = fa
      def prj[A](ga: F[A]) = some(ga)
    }

  implicit def leftInjectInstance[F[_], G[_]] =
    new Inject[F, ({type λ[α] = Coproduct[F, G, α]})#λ] {
      def inj[A](fa: F[A]) = Coproduct.leftc(fa)
      def prj[A](ga: Coproduct[F, G, A]) = ga.run.fold(some(_), _ => none)
    }

  implicit def rightInjectInstance[F[_], G[_], H[_]](implicit I: Inject[F, G]) =
      new Inject[F, ({type λ[α] = Coproduct[H, G, α]})#λ] {
        def inj[A](fa: F[A]) = Coproduct.rightc(I.inj(fa))
        def prj[A](ga: Coproduct[H, G, A]) = ga.run.fold(_ => none, I.prj(_))
      }
}
...

实现函数inj(fa:F[A]):G[A]代表把F[A]并入G[A]。这里还提供了三个类型的实例:

1、reflexiceInjectInstance[F[_]]:自我注入

2、leftInjectInstance[F[_],G[_]]:把F[A]注入Coproduct[F,G,A]的left(-\/)

3、rightInjectInstance[F[_],G[_],H[_]]:把F[A]注入Coproduct的right(\/-)。需要先把F注入G(inj(F[A]):G[A])

我们可以用implicitly来证明Interact和UserLogin的Inject实例存在:

  val selfInj = implicitly[Inject[Interact,Interact]]
  type LeftInterLogin[A] = Coproduct[Interact,UserLogin,A]
  val leftInj = implicitly[Inject[Interact,LeftInterLogin]]
  type RightInterLogin[A] = Coproduct[UserLogin,LeftInterLogin,A]
  val rightInj = implicitly[Inject[Interact,RightInterLogin]]

现在我们需要把Coproduct[F,G,A]的F与G合并然后把F[A]升格成Free[G,A]:

  object coproduct {
    def lift[F[_],G[_],A](fa: F[A])(implicit I: Inject[F,G]): Free.FreeC[G,A] = Free.liftFC(I.inj(fa))
  }

我们可以用这个lift把Interact和UserLogin的ADT统一升格成Free[G,A]:

  object coproduct {
    import FreeInteract._
    import Interact._
    import FreeUserLogin._
    import UserLogin._
    def lift[F[_],G[_],A](fa: F[A])(implicit I: Inject[F,G]): Free.FreeC[G,A] = Free.liftFC(I.inj(fa))
    class Interacts[G[_]](implicit I: Inject[Interact,G]) {
      def ask(prompt: String): Free.FreeC[G,String] = lift(Ask(prompt))
      def tell(msg: String): Free.FreeC[G,Unit] = lift(Tell(msg))
    }
    class Logins[G[_]](implicit I: Inject[UserLogin,G]) {
      def login(u: String, p: String): Free.FreeC[G,Boolean] = lift(Login(u,p))
    }
  }

我们用lift把基础Interact和UserLogin的语句注入了联合的语句集G[A],然后升格成FreeC[G,A]。现在我们可以把Interact,UserLogin这两种语句用在同一个for-comprehension里了:

  def loginScript[G[_]](implicit I: Interacts[G], L: Logins[G]) ={
    import I._
    import L._
    for {
      uid <- ask("ya id?")
      pwd <- ask("password?")
      login <- login(uid,pwd)
      _ <- if (login) tell("ya lucky bastard!") else tell("geda fk outa here!")
    } yield()
  }

有了Inject和Lift,现在已经成功的用两种ADT集成了一个AST。不过我们还必须提供Interacts[G]和Logins[G]实例:

object CoproductModules {
  object CoproductFunctions {
    import FreeInteract._
    import Interact._
    import FreeUserLogin._
    import UserLogin._
    def lift[F[_],G[_],A](fa: F[A])(implicit I: Inject[F,G]): Free.FreeC[G,A] = Free.liftFC(I.inj(fa))
    class Interacts[G[_]](implicit I: Inject[Interact,G]) {
      def ask(prompt: String): Free.FreeC[G,String] = lift(Ask(prompt))
      def tell(msg: String): Free.FreeC[G,Unit] = lift(Tell(msg))
    }
    object Interacts {
      implicit def instance[G[_]](implicit I: Inject[Interact,G]) = new Interacts[G]
    }
    class Logins[G[_]](implicit I: Inject[UserLogin,G]) {
      def login(u: String, p: String): Free.FreeC[G,Boolean] = lift(Login(u,p))
    }
    object Logins {
      implicit def instance[G[_]](implicit I: Inject[UserLogin,G]) = new Logins[G]
    }
  }

现在我们的语句集(AST)是一个联合的语句集(Coproduct)。那么,我们应该怎么去运算它呢?我们应该如何实现它的Interpreter?现在我们面对的Monadic程序类型是个Coproduct:

  type InteractLogin[A] = Coproduct[Interact,UserLogin,A]
  val loginPrg = loginScript[InteractLogin]

现在语句集Interact和UserLogin是分别放在Coproduce的左右两边。那么我们可以历遍这个Coproduct来分别运算Interact和UserLogin语句:

  def or[F[_],G[_],H[_]](fg: F ~> G, hg: H ~> G): ({type l[x] = Coproduct[F,H,x]})#l ~> G =
    new (({type l[x] = Coproduct[F,H,x]})#l ~> G) {
    def apply[A](ca: Coproduct[F,H,A]): G[A] = ca.run match {
      case -\/(fa) => fg(fa)
      case \/-(ha) => hg(ha)
    }
  }

值得注意的是如果or函数用在Interact和UserLogin上时它们自然转换(NaturalTransformation)的目标类型必须一致,应该是一个更大的类型,而且必须是Monad,这是NaturalTransformation的要求。所以我们可以把InteractInterpreter的转换目标类型由Id变成Reader,也就是LoginInterpreter的转换目标类型:

  object InteractReader extends (Interact ~> LoginService) {
    def apply[A](ia: Interact[A]): LoginService[A] = ia match {
    case Ask(p) => println(p);  Reader(cr => readLine)
    case Tell(m) => println(m); Reader(cr => ())
   }
  }

好了,现在我们可以这样来测试运算:

object freePrgDemo extends App {
  import FreeModules._
  import FreeInteract._
  import Interact._
  //Free.runFC(interactScript)(InteractConsole)
  //val result = Free.runFC(interactScript)(InteractTesterMap).apply(
 /* val result = Free.runFC(interactScript)(InteractTesterWriter).run(
    Map(
    "What's your first name?" -> "tiger",
    "What's your last name?" -> "chan"
  ))
  println(result)
  */
  import Dependencies._
  import FreeUserLogin._
  import UserLogin._

  object Passwords extends PasswordControl {
     val pswdMap = Map (
       "Tiger" -> "1234",
       "John" -> "0332"
     )
     def matchPassword(u: User, p: Password) = pswdMap.getOrElse(u, p+"!") === p
  }
  /*
  val result = Free.runFC(loginScript)(LoginInterpreter).run(Passwords)
  println(result)
  */

  import CoproductDemo._
  Free.runFC(loginPrg)(or(InteractReader,LoginInterpreter)).run(Passwords)
}

我们把密码管理依赖也注入进去了。看看结果:

ya id?
Tiger
password?
2012
geda fk outa here!

ya id?
Tiger
password?
1234
ya lucky bastard!

ya id?
John
password?
0332
ya lucky bastard!

OK, 把这节示范源代码提供在下面:

package demos
import scalaz._
import Scalaz._
import scala.language.higherKinds
import scala.language.implicitConversions
object FreeModules {
  object FreeInteract {
    trait Interact[+A]
    type FreeInteract[A] = Free.FreeC[Interact,A]
    object Interact {
      case class Ask(prompt: String) extends Interact[String]
      case class Tell(msg: String) extends Interact[Unit]
      implicit def interactToFreeC[A](ia: Interact[A]) = Free.liftFC(ia)
      object InteractConsole extends (Interact ~> Id) {
        def apply[A](ia: Interact[A]): Id[A] = ia match {
          case Ask(p) => println(p); readLine
          case Tell(m) => println(m)
        }
      }
      type InteractMapTester[A] = Map[String,String] => (List[String], A)
      implicit val mapTesterMonad = new Monad[InteractMapTester] {
         def point[A](a: => A) = _ => (List(), a)
         def bind[A,B](ia: InteractMapTester[A])(f: A => InteractMapTester[B]): InteractMapTester[B] =
           m => {
             val (o1,a1) = ia(m)
             val (o2,a2) = f(a1)(m)
             (o1 ++ o2, a2)
           }
      }
      object InteractTesterMap extends (Interact ~> InteractMapTester) {
        def apply[A](ia: Interact[A]): InteractMapTester[A] = ia match {
          case Ask(p) => { m => (List(), m(p)) } //m(p)返回提问对应的答案作为键盘输入
          case Tell(s) => { m => (List(s), ()) } //List(s)在bind函数中的o1++o2形成跟踪记录
                                                 //在运算AST时会用到InteractMapTester的bind
        }
      }
      type WriterTF[A] = Map[String,String] => A
      type InteractWriterTester[A] = WriterT[WriterTF,List[String],A]
      def testerToWriter[A](f: Map[String,String] => (List[String], A)) =
        WriterT[WriterTF,List[String],A](f)
      implicit val writerTesterMonad = WriterT.writerTMonad[WriterTF, List[String]]
      object InteractTesterWriter extends (Interact ~> InteractWriterTester) {
        def apply[A](ia: Interact[A]): InteractWriterTester[A] = ia match {
          case Ask(p) => testerToWriter { m => (List(), m(p)) }
          case Tell(s) => testerToWriter { m => (List(s), ())}
        }
      }
    }
    import Interact._
    val interactScript = for {
      first <- Ask("What's your first name?")
      last <- Ask("What's your last name?")
      _ <- Tell(s"Hello ${first} ${last}, nice to meet you!")
    } yield ()
  }
  object FreeUserLogin {
    import Dependencies._
    trait UserLogin[+A]
    type FreeUserLogin[A] = Free.FreeC[UserLogin,A]
    object UserLogin {
      case class Login(user: String, pswd: String) extends UserLogin[Boolean]
      implicit def loginToFree[A](ul: UserLogin[A]) = Free.liftFC(ul)
      type LoginService[A] = Reader[PasswordControl,A]
      object LoginInterpreter extends (UserLogin ~> LoginService) {
        def apply[A](ul: UserLogin[A]): LoginService[A] = ul match {
          case Login(u,p) => Reader( cr => cr.matchPassword(u, p))
        }
      }
    }
    import UserLogin._
    val loginScript = for {
      b <- Login("Tiger","1234")
    } yield b
  }
}
object Dependencies {
  trait PasswordControl {
    type User = String
    type Password = String
    val pswdMap: Map[User, Password]
    def matchPassword(u: User, p: Password): Boolean
  }
}
object CoproductDemo {
  import FreeModules._
  import FreeUserLogin._
  import UserLogin._
  import FreeInteract._
  import Interact._
  import Dependencies._
  def lift[F[_],G[_],A](fa: F[A])(implicit I: Inject[F,G]): Free.FreeC[G,A] = Free.liftFC(I.inj(fa))
  class Interacts[G[_]](implicit I: Inject[Interact,G]) {
    def ask(prompt: String) = lift(Ask(prompt))
    def tell(msg: String) = lift(Tell(msg))
  }
  object Interacts {
    implicit def instance[F[_]](implicit I: Inject[Interact,F]) = new Interacts[F]
  }
  class Logins[G[_]](implicit I: Inject[UserLogin,G]) {
    def login(user: String, pswd: String) = lift(Login(user,pswd))
  }
  object Logins {
    implicit def instance[F[_]](implicit I: Inject[UserLogin,F]) = new Logins[F]
  }
  def loginScript[G[_]](implicit I: Interacts[G], L: Logins[G]) ={
    import I._
    import L._
    for {
      uid <- ask("ya id?")
      pwd <- ask("password?")
      login <- login(uid,pwd)
      _ <- if (login) tell("ya lucky bastard!") else tell("geda fk outa here!")
    } yield()
  }

  def or[F[_],G[_],H[_]](fg: F ~> G, hg: H ~> G): ({type l[x] = Coproduct[F,H,x]})#l ~> G =
    new (({type l[x] = Coproduct[F,H,x]})#l ~> G) {
    def apply[A](ca: Coproduct[F,H,A]): G[A] = ca.run match {
      case -\/(fa) => fg(fa)
      case \/-(ha) => hg(ha)
    }
  }

  type InteractLogin[A] = Coproduct[Interact,UserLogin,A]
  val loginPrg = loginScript[InteractLogin]
  object InteractReader extends (Interact ~> LoginService) {
    def apply[A](ia: Interact[A]): LoginService[A] = ia match {
    case Ask(p) => println(p);  Reader(cr => readLine)
    case Tell(m) => println(m); Reader(cr => ())
   }
  }      

}

object freePrgDemo extends App {
  import FreeModules._
  import FreeInteract._
  import Interact._
  //Free.runFC(interactScript)(InteractConsole)
  //val result = Free.runFC(interactScript)(InteractTesterMap).apply(
 /* val result = Free.runFC(interactScript)(InteractTesterWriter).run(
    Map(
    "What's your first name?" -> "tiger",
    "What's your last name?" -> "chan"
  ))
  println(result)
  */
  import Dependencies._
  import FreeUserLogin._
  import UserLogin._

  object Passwords extends PasswordControl {
     val pswdMap = Map (
       "Tiger" -> "1234",
       "John" -> "0332"
     )
     def matchPassword(u: User, p: Password) = pswdMap.getOrElse(u, p+"!") === p
  }
  /*
  val result = Free.runFC(loginScript)(LoginInterpreter).run(Passwords)
  println(result)
  */

  import CoproductDemo._
  Free.runFC(loginPrg)(or(InteractReader,LoginInterpreter)).run(Passwords)
}
时间: 2024-10-04 13:20:49

Scalaz(38)- Free :Coproduce-Monadic语句组合的相关文章

Scalaz(38)- Free :Coproduct-Monadic语句组合

很多函数式编程爱好者都把FP称为Monadic Programming,意思是用Monad进行编程.我想FP作为一种比较成熟的编程模式,应该有一套比较规范的操作模式吧.因为Free能把任何F[A]升格成Monad,所以Free的算式(AST).算法(Interpreter)关注分离(separation of concern)模式应该可以成为一种规范的FP编程模式.我们在前面的几篇讨论中都涉及了一些AST的设计和运算,但都是一些功能单一,离散的例子.如果希望通过Free获取一个完整可用的程序,就

2.38 选择结构switch语句的基本使用

/* switch语句格式: switch(表达式) { case 值1: 语句体1; break; case 值2: 语句体2; break; ... default: 语句体n+1; break; } 格式的解释: switch:表示这是switch选择结构 表达式:这个地方的取值是有限定的 byte,short,int,char JDK5以后可以是枚举 JDK7以后可以是字符串 case:后面跟的是要和表达式进行比较的值 语句体:要执行的代码 break:表示中断,结束的意思,可以控制sw

Scalaz(39)- Free :a real monadic program

一直感觉FP比较虚,可能太多学术性的东西,不知道如何把这些由数学理论在背后支持的一套全新数据类型和数据结构在现实开发中加以使用.直到Free Monad,才真正感觉能用FP方式进行编程了.在前面我们已经花了不小篇幅来了解Free Monad,这次我想跟大家讨论一下用Free Monad来编写一个真正能运行的完整应用程序.当然,这个程序必须具备FP特性,比如函数组合(function composition),纯代码(pure code),延迟副作用(delayed side effect)等等.

Scalaz(14)- Monad:函数组合-Kleisli to Reader

Monad Reader就是一种函数的组合.在scalaz里函数(function)本身就是Monad,自然也就是Functor和applicative.我们可以用Monadic方法进行函数组合: 1 import scalaz._ 2 import Scalaz._ 3 object decompose { 4 //两个测试函数 5 val f = (_: Int) + 3 //> f : Int => Int = <function1> 6 val g = (_: Int) *

泛函编程(24)-泛函数据类型-Monad, monadic programming

在上一节我们介绍了Monad.我们知道Monad是一个高度概括的抽象模型.好像创造Monad的目的是为了抽取各种数据类型的共性组件函数汇集成一套组件库从而避免重复编码.这些能对什么是Monad提供一个明确的答案吗?我们先从上节设计的Monad组件库中的一些基本函数来加深一点对Monad的了解: 1 trait Monad[M[_]] extends Functor[M] { 2 def unit[A](a: A): M[A] 3 def flatMap[A,B](ma: M[A])(f: A =

数据库操作----找了MySQL和SQL Sever两个的基础语句

这是MySQL的基本操作: 1 登入数据库:mysql -uroot -p+密码 (SQL Sever登入: osql -U 用户名 -P 密码) 2 显示已存在的数据库:show databases; 3 使用某个数据库:use+数据库名; 4 显示某个数据库下已存在的关系表:show tables; 5 6 查看某个关系表所有数据:select * from tableName; 7 查看某个关系表部分字段数据:select 字段1,字段2,...,字段n from tableName; 8

经典SQL语句大全以及50个常用的sql语句

经典SQL语句大全 一.基础 1.说明:创建数据库CREATE DATABASE database-name 2.说明:删除数据库drop database dbname3.说明:备份sql server--- 创建 备份数据的 deviceUSE masterEXEC sp_addumpdevice 'disk', 'testBack', 'c:\mssql7backup\MyNwind_1.dat'--- 开始 备份BACKUP DATABASE pubs TO testBack 4.说明:

mysql sql常用语句大全

SQL执行一次INSERT INTO查询,插入多行记录 insert into test.person(number,name,birthday) values(5,'cxx5',now()),(6,'cxx6',now()),(7,'cxx7',now()); 1.说明:创建数据库 CREATE DATABASE database-name 2.说明:删除数据库 drop database dbname 3.说明:备份sql server --- 创建 备份数据的 device USE mas

实用SQL语句

一.基础 1.说明:创建数据库 CREATE DATABASE database-name 2.说明:删除数据库 drop database dbname 3.说明:备份sql server --- 创建 备份数据的 device USE master EXEC sp_addumpdevice 'disk', 'testBack', 'c:\mssql7backup\MyNwind_1.dat' --- 开始 备份 BACKUP DATABASE pubs TO testBack 4.说明:创建