c c++ signal编程

1. 头文件#include <signal.h>
2. 功能设置某一信号的对应动作
3. 函数原型void (*signal(int signum,void(* handler)(int)))(int);
   分解来看:   typedef void (*sig_t) (int);   sig_t signal(int sig, sig_t func);   第一个参数是目标信号。func参数是一个指针,指向某个处理该信号的函数。这个处理信号函数带有一个int型参数,并应返回void。   func参数也可以设定为下面的一些值:   SIG_IGN: 如果func参数被设置为SIG_IGN,该信号将被忽略。   SIG_DFL: 如果func参数被设置为SIG_DFL,该信号会按照确定行为处理。

这是最不要脸的写法,诚心不想让人看……
  1. void (*signal(int signum,void(* handler)(int)))(int);
要脸一点的写法是:
  1. typedef void (*sig_handler)(int);
  2. sig_handler signal(int signum, sig_handler handler);
第一句定义了一个叫sig_handler的函数指针类型,这个函数接受一个int参数,无返回值。第二句声明signal函数,接受一个signum和一个sig_handler,返回老的sig_handler。
4. sig信号的可能类型1) #define SIGHUP 1 /* hangup */   SIGHUP是Unix系统管理员很常用的一个信号。许多后台服务进程在接受到该信号后将会重新读取它们的配置文件。然而,该信号的实际功能是通知进程它的控制终端被断开。缺省行为是终止进程。
2) #define SIGINT 2 /* interrupt */   对于Unix使用者来说,SIGINT是另外一个常用的信号。许多shell的CTRL-C组合使得这个信号被大家所熟知。该信号的正式名字是中断信号。缺省行为是终止进程。
 
3) #define SIGQUIT 3 /* quit */
   SIGQUIT信号被用于接收shell的CTRL-/组合。另外,它还用于告知进程退出。这是一个常用信号,用来通知应用程序从容的(译注:即在结束前执行一些退出动作)关闭。缺省行为是终止进程,并且创建一个核心转储。
4) #define SIGILL 4 /* illegal instr. (not reset when caught) */   如果正在执行的进程中包含非法指令,操作系统将向该进程发送SIGILL信号。如果你的程序使用了线程,或者pointer functions,那么可能的话可以尝试捕获该信号来协助调试。([color=Red]注意:原文这句为:“If your program makes use of use of threads, or pointer functions, try to catch this signal if possible for aid in debugging.”。中间的两个use of use of,不知是原书排版的瑕疵还是我确实没有明白其意义;另外,偶经常听说functions pointer,对于pointer functions,google了一下,应该是fortran里面的东西,不管怎样,还真不知道,确切含义还请知道的兄弟斧正。[/color])缺省行为是终止进程,并且创建一个核心转储。
5) #define SIGTRAP 5 /* trace trap (not reset when caught) */   SIGTRAP这个信号是由POSIX标准定义的,用于调试目的。当被调试进程接收到该信号时,就意味着它到达了某一个调试断点。一旦这个信号被交付,被调试的进程就会停止,并且它的父进程将接到通知。缺省行为是终止进程,并且创建一个核心转储。
6) #define SIGABRT 6 /* abort() */   SIGABRT提供了一种在异常终止(abort)一个进程的同时创建一个核心转储的方法。然而如果该信号被捕获,并且信号处理句柄没有返回,那么进程不会终止。缺省行为是终止进程,并且创建一个核心转储。
7) #define SIGFPE 8 /* floating point exception */   当进程发生一个浮点错误时,SIGFPE信号被发送给该进程。对于那些处理复杂数学运算的程序,一般会建议你捕获该信号。缺省行为是终止进程,并且创建一个核心转储。
8) #define SIGKILL 9 /* kill (cannot be caught or ignored) */   SIGKILL是这些信号中最难对付的一个。正如你在它旁边的注释中看到的那样,这个信号不能被捕获或忽略。一旦该信号被交付给一个进程,那么这个进程就会终止。然而,会有一些极少数情况SIGKILL不会终止进程。这些罕见的情形在处理一个“非中断操作”(比如磁盘I/O)的时候发生。虽然这样的情形极少发生,然而一旦发生的话,会造成进程死锁。唯一结束进程的办法就只有重新启动了。缺省行为是终止进程。
9) #define SIGBUS 10 /* bus error */   如同它的名字暗示的那样,CPU检测到数据总线上的错误时将产生SIGBUS信号。当程序尝试去访问一个没有正确对齐的内存地址时就会产生该信号。缺省行为是终止进程,并且创建一个核心转储。
 
10) #define SIGSEGV 11 /* segmentation violation */   SIGSEGV是另一个C/C++程序员很熟悉的信号。当程序没有权利访问一个受保护的内存地址时,或者访问无效的虚拟内存地址(脏指针,dirty pointers,译注:由于没有和后备存储器中内容进行同步而造成。关于野指针,可以参见http://en.wikipedia.org/wiki/Wild_pointer 的解释。)时,会产生这个信号。缺省行为是终止进程,并且创建一个核心转储。
11) #define SIGSYS 12 /* non-existent system call invoked */   SIGSYS信号会在进程执行一个不存在的系统调用时被交付。操作系统会交付该信号,并且进程会被终止。缺省行为是终止进程,并且创建一个核心转储。
12) #define SIGPIPE 13 /* write on a pipe with no one to read it */   管道的作用就像电话一样,允许进程之间的通信。如果进程尝试对管道执行写操作,然而管道的另一边却没有回应者时,操作系统会将SIGPIPE信号交付给这个讨厌的进程(这里就是那个打算写入的进程)。缺省行为是终止进程。
13) #define SIGALRM 14 /* alarm clock */   在进程的计时器到期的时候,SIGALRM信号会被交付(delivered)给进程。这些计时器由本章后面将会提及的setitimer和alarm调用设置。缺省行为是终止进程。
14) #define SIGTERM 15 /* software termination signal from kill */   SIGTERM信号被发送给进程,通知该进程是时候终止了,并且在终止之前做一些清理活动。SIGTERM信号是Unix的kill命令发送的缺省信号,同时也是操作系统关闭时向进程发送的缺省信号。缺省行为是终止进程。
15) #define SIGURG 16 /* urgent condition on IO channel */   在进程已打开的套接字上发生某些情况时,SIGURG将被发送给该进程。如果进程不捕获这个信号的话,那么将被丢弃。缺省行为是丢弃这个信号。
16) #define SIGSTOP 17 /* sendable stop signal not from tty */   本信号不能被捕获或忽略。一旦进程接收到SIGSTOP信号,它会立即停止(stop),直到接收到另一个SIGCONT信号为止。缺省行为是停止进程,直到接收到一个SIGCONT信号为止。
17) #define SIGTSTP 18 /* stop signal from tty */   SIGSTP与SIGSTOP类似,它们的区别在于SIGSTP信号可以被捕获或忽略。当shell从键盘接收到CTRL-Z的时候就会交付(deliver)这个信号给进程。缺省行为是停止进程,直到接收到一个SIGCONT信号为止。
18) #define SIGCONT 19 /* continue a stopped process */   SIGCONT也是一个有意思的信号。如前所述,当进程停止的时候,这个信号用来告诉进程恢复运行。该信号的有趣的地方在于:它不能被忽略或阻塞,但可以被捕获。这样做很有意义:因为进程大概不愿意忽略或阻塞SIGCONT信号,否则,如果进程接收到SIGSTOP或SIGSTP的时候该怎么办?缺省行为是丢弃该信号。
19) #define SIGCHLD 20 /* to parent on child stop or exit */   SIGCHLD是由Berkeley Unix引入的,并且比SRV 4 Unix上的实现有更好的接口。(如果信号是一个没有追溯能力的过程(not a retroactive process),那么BSD的SIGCHID信号实现会比较好。在system V Unix的实现中,如果进程要求捕获该信号,操作系统会检查是否存在有任何未完成的子进程(这些子进程是已经退出exit)的子进程,并且在等待调用wait的父进程收集它们的状态)。如果子进程退出的时候附带有一些终止信息(terminating information),那么信号处理句柄就会被调用。所以,仅仅要求捕获这个信号会导致信号处理句柄被调用(译注:即是上面说的“信号的追溯能力”),而这是却一种相当混乱的状况。)一旦一个进程的子进程状态发生改变,SIGCHLD信号就会被发送给该进程。就像我在前面章节提到的,父进程虽然可以fork出子进程,但没有必要等待子进程退出。一般来说这是不太好的,因为这样的话,一旦进程退出就可能会变成一个僵尸进程。可是如果父进程捕获SIGCHLD信号的话,它就可以使用wait系列调用中的某一个去收集子进程状态,或者判断发生了什么事情。当发送SIGSTOP,SIGSTP或SIGCONF信号给子进程时,SIGCHLD信号也会被发送给父进程。缺省行为是丢弃该信号。
20) #define SIGTTIN 21 /* to readers pgrp upon background tty read */   当一个后台进程尝试进行一个读操作时,SIGTTIN信号被发送给该进程。进程将会阻塞直到接收到SIGCONT信号为止。缺省行为是停止进程,直到接收到SIGCONT信号。
21) #define SIGTTOU 22 /* like TTIN if (tp->t_local&LTOSTOP) */   SIGTTOU信号与SIGTTIN很相似,不同之处在于SIGTTOU信号是由于后台进程尝试对一个设置了TOSTOP属性的tty执行写操作时才会产生。然而,如果tty没有设置这个属性,SIGTTOU就不会被发送。缺省行为是停止进程,直到接收到SIGCONT信号。
22) #define SIGIO 23 /* input/output possible signal */   如果进程在一个文件描述符上有I/O操作的话,SIGIO信号将被发送给这个进程。进程可以通过fcntl调用来设置。缺省行为是丢弃该信号。
23) #define SIGXCPU 24 /* exceeded CPU time limit */   如果一旦进程超出了它可以使用的CPU限制(CPU limit),SIGXCPU信号就被发送给它。这个限制可以使用随后讨论的setrlimit设置。缺省行为是终止进程。
24) #define SIGXFSZ 25 /* exceeded file size limit */   如果一旦进程超出了它可以使用的文件大小限制,SIGXFSZ信号就被发送给它。稍后我们会继续讨论这个信号。缺省行为是终止进程。
25) #define SIGVTALRM 26 /* virtual time alarm */   如果一旦进程超过了它设定的虚拟计时器计数时,SIGVTALRM信号就被发送给它。缺省行为是终止进程。
26) #define SIGPROF 27 /* profiling time alarm */   当设置了计时器时,SIGPROF是另一个将会发送给进程的信号。缺省行为是终止进程。
27) #define SIGWINCH 28 /* window size changes */   当进程调整了终端的行或列时(比如增大你的xterm的尺寸),SIGWINCH信号被发送给该进程。缺省行为是丢弃该信号。
28) #define SIGUSR1 29 /* user defined signal 1 */29) #define SIGUSR2 30 /* user defined signal 2 */   SIGUSR1和SIGUSR2这两个信号被设计为用户指定。它们可以被设定来完成你的任何需要。换句话说,操作系统没有任何行为与这两个信号关联。缺省行为是终止进程。(译注:按原文的意思翻译出来似乎这两句话有点矛盾。)
5. 例子   5.1. Linux下的Ctrl+C在Windows下的实现一   Linux下通常的做法:   signal(SIGINT, sigfunc); // 设置信号   void sigfunc(int signo)   {      ... //处理信号相关的操作   }
   以下是Linux下的Ctrl+C在Windows下的实现   #include <stdio.h>   #include <windows.h>   static is_loop = 1;   // 捕获控制台 Ctrl+C 事件的函数   BOOL CtrlHandler( DWORD fdwCtrlType )   {      switch (fdwCtrlType)      {      /* Handle the CTRL-C signal. */      case CTRL_C_EVENT:         printf("CTRL_C_EVENT \n");         break;      case CTRL_CLOSE_EVENT:         printf("CTRL_CLOSE_EVENT \n");         break;      case CTRL_BREAK_EVENT:         printf("CTRL_BREAK_EVENT \n");         break;      case CTRL_LOGOFF_EVENT:         printf("CTRL_LOGOFF_EVENT \n");         break;      case CTRL_SHUTDOWN_EVENT:         printf("CTRL_SHUTDOWN_EVENT \n");         break;      default:         return FALSE;      }      is_loop = 0;      return (TRUE);   }
   int main(int argc, char *argv[])   {      printf("Set Console Ctrl Handler\n");      SetConsoleCtrlHandler((PHANDLER_ROUTINE)CtrlHandler, TRUE);      while (is_loop);      return 0;   }
   5.2.Linux下的Ctrl+C在Windows下的实现二   #include <stdio.h>   #include <windows.h>   #define CONTRL_C_HANDLE() signal(3, exit)   int main(int argc, char *argv[])   {      printf("Set Console Ctrl Handler\n");      CONTRL_C_HANDLE();      while (1);      system("PAUSE");      return 0;   }
时间: 2024-10-10 13:34:38

c c++ signal编程的相关文章

[学习笔记]信号基本概念(中断和信号)/名称及常用信号/信号处理/signal函数实践

1基本概念 中断 q  中断是系统对于异步事件的响应 q  中断信号 q  中断源 q  现场信息 q  中断处理程序 q  中断向量表 异步事件的响应:进程执行代码的过程中可以随时被打断,然后去执行异常处理程序 生活中的中断和计算机系统中的中断 1)  无中断生活场景 张三看书,厨房烧水 2)有中断的生活场景 张三看书,设置闹钟,厨房烧水. 闹钟发出中断信号,张三把书合好(第20页),去厨房把开水事情处理好,张三重新打开20页进行阅读. 3)计算机系统的中断场景 中断源发出中断信号,CPU判断

linux编程下signal()函数

linux编程下signal()函数 当服务器close一个连接时,若client端接着发数据.根据TCP协议的规定,会收到一个RST响应,client再往这个服务器发送数据时,系统会发出一个SIGPIPE信号给进程,告诉进程这个连接已经断开了,不要再写了.根据信号的默认处理规则SIGPIPE信号的默认执行动作是 terminate(终止.退出), 所以client会退出. 若不想客户端退出可以把 SIGPIPE设为SIG_IGN 如: signal(SIGPIPE,SIG_IGN); 这时SI

UNIX环境高级编程之-----信号signal

参考书籍:unxi环境高级编程 信号函数: <span style="font-family:Microsoft YaHei;font-size:18px;">typedef void (*sighandler_t)(int); sighandler_t signal(int signum, sighandler_t handler); </span> 其原型为: <span style="font-family:Microsoft YaHei;

Linux系统下mpi 编程出现:Signal: Segmentation fault, Signal code: Address not mapped

在Ubuntu(安装了mpich和openmpi)下MPI编程时,代码没问题,但是在mpirun运行的时候出现如下问题[ubuntu:04803] *** Process received signal *** [ubuntu:04803] Signal: Segmentation fault (11) [ubuntu:04803] Signal code: Address not mapped (1) [ubuntu:04803] Failing at address: 0x7548d0c [

UNIX高级环境编程(13)信号 - 概念、signal函数、可重入函数

信号就是软中断. 信号提供了异步处理事件的一种方式.例如,用户在终端按下结束进程键,使一个进程提前终止. ? 1 信号的概念 每一个信号都有一个名字,它们的名字都以SIG打头.例如,每当进程调用了abort函数时,都会产生一个SIGABRT信号. 每一个信号对应一个正整数,定义在头文件<signal.h>中. 没有信号对应整数0,kill函数使用信号编号0表示一种特殊情况,所以信号编号0又叫做空信号(null signal). 下面的各种情况会产生一个信号: 当用户在终端按下特定的键时,会产生

QT高级编程技巧(一)-- 编写高效的signal &amp; slot通信代码

关于QT的线程通信,我们都会想到signal & slot机制.先回顾下利用signal & slot机制实现控件消息处理的方法. 控件消息处理 假设我们的主界面上有一个使用ui->btn指向的QPushButton对象,要实现该对象的clicked消息处理,可以在主界面对象MainWindow上添加一个slot方法onBtnClicked,并在其构造函数中使用connect方法与ui->btn的clicked消息进行绑定,如下: MainWindow::MainWindow(

【UNIX环境高级编程 | 7】函数signal

命令形参 命令行参数是使用main()函数参数来处理的,其中,argc是指传入参数的个数,argv[]是一个指针数组,指向传递给程序的每个参数. 应当指出的是, argv[0]存储程序的名称,argv[1]是一个指向第一个命令行参数的指针,argv[n]是最后一个参数. 如果没有提供任何参数,argc 将为1,否则,如果传递了一个参数,argc将被设置为2. 多个命令行参数之间用空格分隔,但是如果参数本身带有空格,那么传递参数的时候应把参数放置在双引号或单引号内部. 1 #include <st

Linux的I/O模式、事件驱动编程模型

大纲: (1)基础概念回顾 (2)Linux的I/O模式 (3)事件驱动编程模型 (4)select/poll/epoll的区别和Python示例 网络编程里常听到阻塞IO.非阻塞IO.同步IO.异步IO等概念,总听别人装13不如自己下来钻研一下.不过,搞清楚这些概念之前,还得先回顾一些基础的概念. 1.基础知识回顾 注意:咱们下面说的都是Linux环境下,跟Windows不一样哈~~~ 1.1 用户空间和内核空间 现在操作系统都采用虚拟寻址,处理器先产生一个虚拟地址,通过地址翻译成物理地址(内

Java并发编程:线程间协作的两种方式:wait、notify、notifyAll和Condition

在前面我们将了很多关于同步的问题,然而在现实中,需要线程之间的协作.比如说最经典的生产者-消费者模型:当队列满时,生产者需要等待队列有空间才能继续往里面放入商品,而在等待的期间内,生产者必须释放对临界资源(即队列)的占用权.因为生产者如果不释放对临界资源的占用权,那么消费者就无法消费队列中的商品,就不会让队列有空间,那么生产者就会一直无限等待下去.因此,一般情况下,当队列满时,会让生产者交出对临界资源的占用权,并进入挂起状态.然后等待消费者消费了商品,然后消费者通知生产者队列有空间了.同样地,当