Google的分布式计算模型Map Reduce map函数将输入分割成key/value对

http://www.nowamagic.net/librarys/veda/detail/1768

上一篇 大规模分布式数据处理平台Hadoop的介绍 中提到了Google的分布式计算模型Map Reduce,这里再单独拿出来了解一下。

并行计算简介

计算机的早期阶段,程序都是serial(连续的),类似于批处理程序。

并行计算的程序中,进程将一个任务分割成多个部分parts,每个“部分“都是能够并行处理的,每个“部分”可以同时运行在不同的cpu上,这些cpus可以是同一台机器上,也可以是通过网络运行在不同机器的cpu上。

如果一个程序想要通过并行来实现,第一步的工作是需要将待处理的工作分割成一系列的任务task,并且这些任务是能够并行的运行在处理器上,当然一些情况下,待处理的工作是没有办法分割成这样的一些列的任务的,例如对于计算Fibonacci这个工作:

Fk+2 = Fk + Fk+1

该工作是不能被分割为这样的一系列的任务的,因为每个计算的值是需要依赖上次计算的结果的。

下面给出一个能够被“并行”的例子:

如果有大量的数据需要被处理,如果这些数据能够被分割为等大小的小块(partitions)。更加具体话的说,对于下面的数组:

如果我们需要对于上面数组的每个元素都进行处理,并且每个计算是相对独立的话,任务之间不需要交互,这是一个使用master/worker的基本实现:

Master:

  1. 初始化该数组,并且将该数组分割成各个部分subarray
  2. 将每个subarray发送到各个worker
  3. 如果各个worker完成了对于数组元素的计算的话,master将接受各个worker的计算结果

Worker:

  1. 接受subarray
  2. 处理该subarray
  3. 将计算结构传递给master

什么是MapReduce?

在lisp语言中,map作为一个输入函数接受一个序列,然后处理每个序列中value值,然后reduce将最终的map计算出来的结果整理成最终程序输出。这就是MapReduce最初的思想来源,通过用户定义的map函数将输入分割成key/value对,然后处理该数据,最终通过Reduce函数将处理完成的记过合并。

下面是一个简单的示例程序:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");
reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);
Emit(AsString(result));

MapReduce是如何运行的?

Map/Reduce模型计算示意图

1. MapReduce Library首先将输入文件切割成多个小片的文件pieces,然后MapReduce Library将启动复制操作,将用户程序复制到各个a cluster of machines上。

2. 在这些a cluster of machines中,其中一个比较特殊称之为master,其他的machine被称之为worker,master选择空闲的worker并将任务(map任务或者是reduce任务)分配给这些空闲的worker任务。

3. 一个worker如果被master分配了map任务的话,该worker首先读取该key/value对,然后执行用户定义的map函数,这些处理完成的key/value对被缓存到内存中。

4. 然后,将这些key/value对写入本地磁盘,然后worker通知master。

5. 如果master接收到了worker在第4步的通知之后,master将这个信息传递给reduce worker,该reduce worker通过远程系统调用的形式读取该worker磁盘上存储的处理完的数据。

如果reduce worker读取完了所有的数据的话,然后该reduce worker将读取到的数据排序,如果数据量比较大的话,无法全部放在内存中,那么排序将使用外部排序来实现。

6. Reduce worker遍历已排序的数据,然后将数据传递到用户定义的Reduce函数。

7. 当所有的map和reduce完成之后,然后master唤醒用户程序。

通过整个程序的运行过程,我们可以看出用户程序仅仅需要编写Map函数和Reduce函数即可,MapReduce库首先通过调用用户自定义的Map函数,将输入文件分割,如果数据处理完成,将调用Reduce函数将结果合并起来。

时间: 2024-12-28 04:33:15

Google的分布式计算模型Map Reduce map函数将输入分割成key/value对的相关文章

一步一步跟我学习hadoop(5)----hadoop Map/Reduce教程(2)

Map/Reduce用户界面 本节为用户採用框架要面对的各个环节提供了具体的描写叙述,旨在与帮助用户对实现.配置和调优进行具体的设置.然而,开发时候还是要相应着API进行相关操作. 首先我们须要了解Mapper和Reducer接口,应用通常须要提供map和reduce方法以实现他们. 接着我们须要对JobConf, JobClient,Partitioner,OutputCollector,Reporter,InputFormat,OutputFormat,OutputCommitter等进行讨

Python进阶:函数式编程(高阶函数,map,reduce,filter,sorted,返回函数,匿名函数,偏函数)...啊啊啊

函数式编程 函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计的基本单元. 而函数式编程(请注意多了一个"式"字)--Functional Programming,虽然也可以归结到面向过程的程序设计,但其思想更接近数学计算. 我们首先要搞明白计算机(Computer)和计算(Compute)的概念. 在计算机的层次上,CPU执行的是加减乘除的指令代码

高阶函数:map()/reduce()

Python内建了map()和reduce()函数. 如果你读过Google的那篇大名鼎鼎的论文"MapReduce: Simplified Data Processing on Large Clusters",你就能大概明白map/reduce的概念. 我们先看map.map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回. 举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个li

Python 高阶函数 -- map/reduce

这个内容我是参考廖雪峰的博客,摘抄其中一些内容而来的,附带解决他最后的问题代码. 这是我在C/C++中未曾见过的语法(可能是我学艺未精),理解它确实花了十来二十分钟.它提供了一条google的论文链接:"MapReduce: Simplified Data Processing on Large Clusters",据说是一篇很牛逼的文章.当我理解了这个概念后,觉得确实很方便. 先看map.map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列

Python经常使用内置函数介绍【filter,map,reduce,apply,zip】

Python是一门非常简洁,非常优雅的语言,其非常多内置函数结合起来使用,能够使用非常少的代码来实现非常多复杂的功能,假设相同的功能要让C/C++/Java来实现的话,可能会头大,事实上Python是将复杂的数据结构隐藏在内置函数中,用C语言来实现,所以仅仅要写出自己的业务逻辑Python会自己主动得出你想要的结果.这方面的内置函数主要有,filter,map,reduce,apply,结合匿名函数,列表解析一起使用,功能更加强大.使用内置函数最显而易见的优点是: 1. 速度快,使用内置函数,比

map/reduce函数

map map()函数接受两个值,一个是函数,另一个是Iterable,map将传入的函数依次作用于序列的每一个元素,并将结果作为一个新的Iterator返回. 我们想把f(x)=x2作用于一个列表[1,2,3,4,5,6,7,8,9],就可以这样做 >>> def f(x): return x*x >>> res = map(f,[1,2,4,5,6,7,8,9]) >>> print(res) <map object at 0x0000000

Python 函数 filter() map() reduce()

1.filter(bool_func,seq) filter()是'筛选函数',也接收一个函数和一个序列,filter()把传人的函数依次作用于序列的每个元素,然后根据返回值是True还是false决定保留还是丢弃该元素 例子: def fr(x): return x%2==1 print 'filter1:',filter(fr,range(1,51))#筛选出100以内的所有奇数 print 'filter2:',filter(fr,[1,2,3,4]) 输出: filter1: [1, 3

python之lambda,filter,map,reduce函数

g = lambda x:x+1 看一下执行的结果: g(1) >>>2 g(2) >>>3 当然,你也可以这样使用: lambda x:x+1(1) >>>2 可以这样认为,lambda作为一个表达式,定义了一个匿名函数,上例的代码x为入口参数,x+1为函数体,用函数来表示为: def g(x): return x+1 非常容易理解,在这里lambda简化了函数定义的书写形式.是代码更为简洁,但是使用函数的定义方式更为直观,易理解. Python中,

[python基础知识]python内置函数map/reduce/filter

python内置函数map/reduce/filter 这三个函数用的顺手了,很cool. filter()函数:filter函数相当于过滤,调用一个bool_func(只返回bool类型数据的方法)来迭代遍历每个序列中的元素. 返回bool_func结果为true的元素的序列(注意弄清楚序列是什么意思)http://blog.csdn.net/bolike/article/details/19997465序列参考</a> 如果filter参数值为None,list参数中所有为假的元 素都将被