覆盖的面积
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3870 Accepted Submission(s): 1906
Problem Description
给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.
Input
输入数据的第一行是一个正整数T(1<=T<=100),代表测试数据的数量.每个测试数据的第一行是一个正整数N(1<=N<=1000),代表矩形的数量,然后是N行数据,每一行包含四个浮点数,代表平面上的一个矩形的左上角坐标和右下角坐标,矩形的上下边和X轴平行,左右边和Y轴平行.坐标的范围从0到100000.
注意:本题的输入数据较多,推荐使用scanf读入数据.
Output
对于每组测试数据,请计算出被这些矩形覆盖过至少两次的区域的面积.结果保留两位小数.
Sample Input
2 5 1 1 4 2 1 3 3 7 2 1.5 5 4.5 3.5 1.25 7.5 4 6 3 10 7 3 0 0 1 1 1 0 2 1 2 0 3 1
Sample Output
7.63 0.00
Author
Ignatius.L & weigang Lee
Recommend
Ignatius.L | We have carefully selected several similar problems for you: 1698 1823 2871 1541 3333
这题用线段树维护时,要多维护一个len2,表示被覆盖至少2次的线段长度, 其他和矩形并一样, 在纸上画一下图就知道为什么了
当add >= 2
区间里被覆盖一次及一次以上的线段长度和被覆盖至少2次的线段长度一样,都是区间长度
当add==1
区间里被覆盖一次及一次以上的线段长度是区间长度, 被覆盖至少2次的线段长度是左右子树被覆盖至少一次的线段长度之和(这些线段在子树上被覆盖一次, 在根上又被覆盖一,所以一共被覆盖2次)
当add == 0
根状态由子树决定
注意特判叶子节点
/************************************************************************* > File Name: hdu1255.cpp > Author: ALex > Mail: [email protected] > Created Time: 2015年01月15日 星期四 17时46分07秒 ************************************************************************/ #include <map> #include <set> #include <queue> #include <stack> #include <vector> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int N = 2010; struct node { double l, r; double h; int flag; }lines[N << 1]; struct segment { int l, r; int add; double len1, len2; }tree[N << 2]; double xis[N << 1]; int n, cnt; int cmp (node a, node b) { return a.h < b.h; } int BinSearch(double val) { int l = 1; int r = cnt; int mid; while (l <= r) { mid = (l + r) >> 1; if (xis[mid] < val) { l = mid + 1; } else if (xis[mid] > val) { r = mid - 1; } else { break; } } return mid; } void build (int p, int l, int r) { tree[p].l = l; tree[p].r = r; tree[p].add = 0; tree[p].len1 = 0; tree[p].len2 = 0; if (l == r) { return; } int mid = (l + r) >> 1; build (p << 1, l, mid); build (p << 1 | 1, mid + 1, r); } void pushup (int p) { if (tree[p].add >= 2) { tree[p].len2 = xis[tree[p].r + 1] - xis[tree[p].l]; tree[p].len1 = tree[p].len2; } else if (tree[p].add == 1) { tree[p].len1 = xis[tree[p].r + 1] - xis[tree[p].l]; if (tree[p].l == tree[p].r) { tree[p].len2 = 0; } else { tree[p].len2 = tree[p << 1].len1 + tree[p << 1 | 1].len1; } } else { if (tree[p].l == tree[p].r) { tree[p].len1 = tree[p].len2 = 0; } else { tree[p].len1 = tree[p << 1].len1 + tree[p << 1 | 1].len1; tree[p].len2 = tree[p << 1].len2 + tree[p << 1 | 1].len2; } } } void update (int p, int l, int r, int val) { if (tree[p].l == l && r == tree[p].r) { tree[p].add += val; pushup (p); return; } int mid = (tree[p].l + tree[p].r) >> 1; if (r <= mid) { update (p << 1, l, r, val); } else if (l > mid) { update (p << 1 | 1, l, r, val); } else { update (p << 1, l, mid, val); update (p << 1 | 1, mid + 1, r, val); } pushup (p); } int main() { int t; double x1, y1, x2, y2; scanf("%d", &t); while (t--) { cnt = 0; scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2); lines[i].l = x1; lines[i].r = x2; lines[i].h = y1; lines[i].flag = 1; lines[i + n].l = x1; lines[i + n].r = x2; lines[i + n].h = y2; lines[i + n].flag = -1; xis[++cnt] = x1; xis[++cnt] = x2; } sort (xis + 1, xis + cnt + 1); cnt = unique (xis + 1, xis + cnt + 1) - xis - 1; build (1, 1, cnt); sort (lines + 1, lines + 2 * n + 1, cmp); double ans = 0; int l = BinSearch (lines[1].l); int r = BinSearch (lines[1].r) - 1; update (1, l, r, lines[1].flag); for (int i = 2; i <= 2 * n; ++i) { ans += tree[1].len2 * (lines[i].h - lines[i - 1].h); l = BinSearch (lines[i].l); r = BinSearch (lines[i].r) - 1; update (1, l, r, lines[i].flag); } printf("%.2lf\n", ans); } return 0; }