《University Calculus》-chaper13-多重积分-二重积分的计算

之前关于二重积分的笔记,介绍了二重积分概念的引入,但是对于它的计算方法(化为累次积分),介绍的较为模糊,它在《概率论基础教程》中一系列的推导中发挥着很重要的作用。

回想先前关于二重积分的几何含义,求解一个曲顶圆柱的体积,我们用如下的符号进行定义:

现在我们通过另外一条路径,再次得到几何体的体积,便可以建立等式,那么对于一般的二重积分,我们就找到了计算方法。

看这样一个图:

落在x-O-y上的面积就是被积区域D,几何体的顶部z=f(x,y)就是被积函数,为了求解这个几何体的体积,我们采取先求侧面面积(平行于y-O-z面),然后对基于所求结果再对x进行积分,便得到了几何体的体积。

侧面积A(x0):

简单的一维积分求解曲边梯形。

随后基于这个侧面积的结果再对x积分,显然就得到了体积,等式如下。

那么我们就将重积分化为了累次积分,在上述形式中,最后两个等号后边的形式都表示先对y积分然后对x积分。

需要注意,按照这种极限法表示几何的体积,对它的底面是有限制的,它分为X型积分区域和Y型积分区域,例如在上面的图中,是一个X型积分区域。

Y型积分区域:

X型积分区域:

那么很显然,如果对于某个积分区域既满足X型又满足Y型,那么我们有如下的等式成立:

这就是二重积分的计算方法以及交换积分次序的原理。

时间: 2024-11-04 15:37:32

《University Calculus》-chaper13-多重积分-二重积分的计算的相关文章

《University Calculus》-chaper13-多重积分-二重积分的引入

这一章节我们开始对多重积分的研究. 在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f(x),对f(x)求解一次定积分即可.其方法就是先微分(将自变量区间划分为n个区间段),引入极限的概念(即使得n趋向无穷)之后使得我们能够“化曲为直”,然后利用矩形的面积公式进行求解.随后是积分过程,将这n个小矩形相加求极限,可得曲边梯形的面积. 如下几图使得这个过程更加的直观. Sp又叫做,f(x

《University Calculus》-chape12-偏导数-基本概念

偏导数本质上就是一元微分学向多元函数的推广. 关于定义域的开域.闭域的推广: 其实这个定义本质上讲的就是xoy面上阴影区域的最外面的一周,只不过这里用了更加规范的数学语言. 二次函数的图形.层曲线(等值曲线): 一元函数的定义域在x轴上,函数图像在xoy面上:二元函数的定义域在xoy面上,函数图像在空间当中,而三元函数的定义域对应着空间的集合体.这里面对二元.三元函数我们有一个最基本的问题,就是勾勒出它们的大致图像,虽然目前有数学软件可以较为快速准确的描绘出函数的图像,但是掌握一定的确定函数图像

《University Calculus》-chaper13-向量场中的积分-线积分

线积分: 基于二重积分和三重积分的引入,我们对于线积分的引入过程将会轻车熟路. 对于一根不均匀密度的铜丝,我们如何求其总质量?如下图. 类似二重积分和三重积分的引入,我们首先基于实际问题给出黎曼和的形式,然后规定出积分符号,然后抽象出模型,然后再讨论如何正确的计算. 这里我们将这段曲线分割成n个区间段,可以近似求解质量,而随着n趋向无穷,这种近似的取法最终将逼近准确答案,则有如下的黎曼和形式(这里建立三维坐标系,f(x,y,z)是记录铜导线(x,y,z)点的密度的函数): 写成积分形式为: 其表

《University Calculus》-chaper13-多重积分-三重积分的引入

承接之前对一重积分和二重积分的介绍,这里我们自然的引出三重积分. 在二重积分的引入中,我们曾经埋下过一个小伏笔,二重积分的几何意义是求解一个体积,但是我们仅仅限定在了曲顶柱体的几何体,那么对于完全由曲面D包裹的空间D’,我们如何求其体积呢? 我们很自然的能够想到,从x.y.z三个维度作平行线,然后把D’分割成了n个小长方体,如下图. 伴随着n趋于无穷,我们可以完美的得到D’区域的体积. 个人认为,这个例子仅仅是为了自然的引出三重积分的概念和形式,在实际应用中,很难通过这个方法来计算各种各样不规则

《University Calculus》-chape10-向量与空间几何学-向量夹角

点积.向量夹角: 无论对于空间向量还是平面向量,我们所熟知的是:给出任意两个向量,我们都能够根据公式计算它们的夹角,但是这个夹角必须是将两个向量的起点重合后所夹成的小于等于π的角,可是,这是为什么呢? 它其实来源于如下的定理(这里的定理和证明过程以三维向量为例,对于二维向量,可做完全一致的推导): 证明: 考虑在如下的一个三角形中. 通过这个定理的证明过程就能够理解:为什么我们求向量夹角用点积:两个向量之间的点积为什么等于两个向量模长再乘以夹角的余弦值:为什么我们求出来的角是起点重合的两个向量夹

《University Calculus》-chape6-定积分的应用-求体积

定积分一个广泛的应用就是在求解一些“看似不规则”的几何体的体积,之所以说看似不规则,是因为不规则之下还是有一定的“规则性”可言的,我们就是需要抓住这些线索进行积分运算得到体积. 方法1:切片法. 这里由于处理的方法思想和典型的离散的黎曼和到连续的积分的过程类似,因此这里不再重复推导,直接给出如何应用以及实例. 基于这条定理,我们能够直接介绍一下卡瓦列里原理.卡瓦列里原理表明,高度相同并且在每个高度上的横截面积相同的几何体的体积相同,直观的理解,就像下面这两堆“叠硬币”图. 下面我们看一些实例.

《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式

写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运算,他们老师由于不想说话就向我们扔了一个自然对数e! 其实很多人觉得数学抽象.晦涩而且无章可循,其实这都是假想,如果真的有这种感觉,很大程度上是教科书在编排顺序上有瑕疵.数学本身是语言,描述自然的语言,因此在每个概念.公式的背后,往往都需要(或者说必然)对应着现实模型,因此在学习新的概念的时候,考察它的现实意

《University Calculus》-chape5-积分法-积分的定义

这一章节讨论积分的定义以及微积分基本定理. 笔者先前在数学证明专栏中关于高斯定理的证明的开头,给出了一段关于微积分思想的概括,文中提到根据导数(微分)的定义,根据其逆定义来给出积分的定义和计算方法,这里其实是及其不严谨的,积分本身有着自己的定义,而其计算方法正是微积分基本定理所呈现出来的东西. 积分的定义: 积分的现代定义的本质就是黎曼和,笔者之前关于多重积分定义的引入其实就已经提到过,这里是对一维的积分进行定义,相对二重.三重积分则会简单很多. 理论总是源于实际问题嘛,在解决曲线和坐标系围成的

《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式

基于基本的极限分析方法(诸多的无穷小以及洛必达法则),我们能够得到推导出一些表面上看不是那么显然的式子,这些极限恒等式往往会在其他的推导过程中用到,其中一个例子就是概率论中的极限定理那部分知识.