Spark的shuffle剖析!

一、什么是shuffle?

shuffle是洗牌的意思,总的来说,就是分散在各个节点的数据,在经过计算之后,需要重新将数据进行分配,以进行下一步的计算。比如wordcount,显示在3台节点上,分别计算了spark的数量、hadoop的数量、scala的数量,结果如下:

节点1:   (spark 1)   (hadoop 1)

节点2:   (hadoop 1)  (scala 1)

节点3:   (hadoop 1)  (spark 3)

在经过计算之后,下一步就需要汇总了,那么汇总就涉及到shuffle,把数据要分类传输,比如spark的都到节点1,hadoop 的都到节点2,scala的都到节点3。

二、为什么shuffle重要?

Spark大会上,所有的演讲嘉宾都认为shuffle是最影响性能的地方,在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量。

三、从技术上结识shuffle?

Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时,输出结果需要按key哈希,并且分发到每一个Reducer上去,这个过程就是shuffle。由于shuffle涉及到了磁盘的读写和网络的传输,因此shuffle性能的高低直接影响到了整个程序的运行效率。

下面这幅图清晰地描述了MapReduce算法的整个流程,其中shuffle phase是介于Map phase和Reduce phase之间。

四、shuffle阶段的划分

Spark的操作模型是基于RDD的,当调用RDD的reduceByKey、groupByKey等类似的操作的时候,就需要有shuffle了。再拿出reduceByKey这个来讲。

def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] = {
    reduceByKey(new HashPartitioner(numPartitions), func)
  }

reduceByKey的时候,我们可以手动设定reduce的个数,如果不指定的话,就可能不受控制了。

def defaultPartitioner(rdd: RDD[_], others: RDD[_]*): Partitioner = {
    val bySize = (Seq(rdd) ++ others).sortBy(_.partitions.size).reverse    for (r <- bySize if r.partitioner.isDefined) {      return r.partitioner.get
    }    if (rdd.context.conf.contains("spark.default.parallelism")) {      new HashPartitioner(rdd.context.defaultParallelism)
    } else {      new HashPartitioner(bySize.head.partitions.size)
    }
  }

如果不指定reduce个数的话,就按默认的走:

1、如果自定义了分区函数partitioner的话,就按你的分区函数来走。

2、如果没有定义,那么如果设置了 spark.default.parallelism ,就使用哈希的分区方式,reduce个数就是设置的这个值。

3、如果这个也没设置,那就按照输入数据的分片的数量来设定。如果是hadoop的输入数据的话,这个就多了。。。大家可要小心啊。

设定完之后,它会做三件事情,也就是之前讲的3次RDD转换。

//map端先按照key合并一次val combined = self.mapPartitionsWithContext((context, iter) => {  aggregator.combineValuesByKey(iter, context)
 }, preservesPartitioning = true)//reduce抓取数据val partitioned = new ShuffledRDD[K, C, (K, C)](combined, partitioner).setSerializer(serializer)//合并数据,执行reduce计算partitioned.mapPartitionsWithContext((context, iter) => {  new InterruptibleIterator(context, aggregator.combineCombinersByKey(iter, context))
 }, preservesPartitioning = true)

1、在第一个MapPartitionsRDD这里先做一次map端的聚合操作。

2、SHuffledRDD主要是做从这个抓取数据的工作。

3、第二个MapPartitionsRDD把抓取过来的数据再次进行聚合操作。

4、步骤1和步骤3都会涉及到spill的过程。

怎么做的聚合操作,回去看RDD那章。

五、Shuffle的中间结果如何存储

作业提交的时候,DAGScheduler会把Shuffle的过程切分成map和reduce两个Stage(之前一直被我叫做shuffle前和shuffle后),具体的切分的位置在上图的虚线处。

map端的任务会作为一个ShuffleMapTask提交,最后在TaskRunner里面调用了它的runTask方法。

override def runTask(context: TaskContext): MapStatus = {
    val numOutputSplits = dep.partitioner.numPartitions
    metrics = Some(context.taskMetrics)

    val blockManager = SparkEnv.get.blockManager
    val shuffleBlockManager = blockManager.shuffleBlockManager    var shuffle: ShuffleWriterGroup = null
    var success = false

    try {      // serializer为空的情况调用默认的JavaSerializer,也可以通过spark.serializer来设置成别的
      val ser = Serializer.getSerializer(dep.serializer)      // 实例化Writer,Writer的数量=numOutputSplits=前面我们说的那个reduce的数量
      shuffle = shuffleBlockManager.forMapTask(dep.shuffleId, partitionId, numOutputSplits, ser)      // 遍历rdd的元素,按照key计算出来它所在的bucketId,然后通过bucketId找到相应的Writer写入
      for (elem <- rdd.iterator(split, context)) {
        val pair = elem.asInstanceOf[Product2[Any, Any]]
        val bucketId = dep.partitioner.getPartition(pair._1)
        shuffle.writers(bucketId).write(pair)
      }      // 提交写入操作. 计算每个bucket block的大小
      var totalBytes = 0L
      var totalTime = 0L
      val compressedSizes: Array[Byte] = shuffle.writers.map { writer: BlockObjectWriter =>
        writer.commit()
        writer.close()
        val size = writer.fileSegment().length
        totalBytes += size
        totalTime += writer.timeWriting()
        MapOutputTracker.compressSize(size)
      }      // 更新 shuffle 监控参数.
      val shuffleMetrics = new ShuffleWriteMetrics
      shuffleMetrics.shuffleBytesWritten = totalBytes
      shuffleMetrics.shuffleWriteTime = totalTime
      metrics.get.shuffleWriteMetrics = Some(shuffleMetrics)

      success = true
      new MapStatus(blockManager.blockManagerId, compressedSizes)
    } catch { case e: Exception =>      // 出错了,取消之前的操作,关闭writer
      if (shuffle != null && shuffle.writers != null) {        for (writer <- shuffle.writers) {
          writer.revertPartialWrites()
          writer.close()
        }
      }      throw e
    } finally {      // 关闭writer
      if (shuffle != null && shuffle.writers != null) {        try {
          shuffle.releaseWriters(success)
        } catch {          case e: Exception => logError("Failed to release shuffle writers", e)
        }
      }      // 执行注册的回调函数,一般是做清理工作      context.executeOnCompleteCallbacks()
    }
  }

遍历每一个记录,通过它的key来确定它的bucketId,再通过这个bucket的writer写入数据。

下面我们看看ShuffleBlockManager的forMapTask方法吧。

def forMapTask(shuffleId: Int, mapId: Int, numBuckets: Int, serializer: Serializer) = {    new ShuffleWriterGroup {
      shuffleStates.putIfAbsent(shuffleId, new ShuffleState(numBuckets))      private val shuffleState = shuffleStates(shuffleId)      private var fileGroup: ShuffleFileGroup = null

      val writers: Array[BlockObjectWriter] = if (consolidateShuffleFiles) {
        fileGroup = getUnusedFileGroup()        Array.tabulate[BlockObjectWriter](numBuckets) { bucketId =>
          val blockId = ShuffleBlockId(shuffleId, mapId, bucketId)
      // 从已有的文件组里选文件,一个bucket一个文件,即要发送到同一个reduce的数据写入到同一个文件          blockManager.getDiskWriter(blockId, fileGroup(bucketId), serializer, bufferSize)
        }
      } else {        Array.tabulate[BlockObjectWriter](numBuckets) { bucketId =>          // 按照blockId来生成文件,文件数为map数*reduce数
          val blockId = ShuffleBlockId(shuffleId, mapId, bucketId)
          val blockFile = blockManager.diskBlockManager.getFile(blockId)          if (blockFile.exists) {            if (blockFile.delete()) {
              logInfo(s"Removed existing shuffle file $blockFile")
            } else {
              logWarning(s"Failed to remove existing shuffle file $blockFile")
            }
          }
          blockManager.getDiskWriter(blockId, blockFile, serializer, bufferSize)
        }
      }

几个重要的结论:

1、map的中间结果是写入到本地硬盘的,而不是内存

2、默认是一个map的中间结果文件是M*R(M=map数量,R=reduce的数量),设置了spark.shuffle.consolidateFiles为true之后是R个文件,根据bucketId把要分到同一个reduce的结果写入到一个文件中。

3、consolidateFiles采用的是一个reduce一个文件,它还记录了每个map的写入起始位置,所以查找的时候,先通过reduceId查找到哪个文件,再同坐mapId查找索引当中的起始位置offset,长度length=(mapId + 1).offset -(mapId).offset,这样就可以确定一个FileSegment(file, offset, length)。

4、Finally,存储结束之后, 返回了一个new MapStatus(blockManager.blockManagerId, compressedSizes),把blockManagerId和block的大小都一起返回。

六、Shuffle的数据如何拉取过来

ShuffleMapTask结束之后,最后在DAGScheduler的handleTaskCompletion方法当中。

1、把结果添加到Stage的outputLocs数组里,它是按照数据的分区Id来存储映射关系的partitionId->MapStaus。

2、stage结束之后,通过mapOutputTracker的registerMapOutputs方法,把此次shuffle的结果outputLocs记录到mapOutputTracker里面。

这个stage结束之后,就到ShuffleRDD运行了,我们看一下它的compute函数。

SparkEnv.get.shuffleFetcher.fetch[P](shuffledId, split.index, context, ser)

它是通过ShuffleFetch的fetch方法来抓取的,具体实现在BlockStoreShuffleFetcher里面。

1、MapOutputTrackerWorker向MapOutputTrackerMaster获取shuffle相关的map结果信息。

2、把map结果信息构造成BlockManagerId --> Array(BlockId, size)的映射关系。

3、通过BlockManager的getMultiple批量拉取block。

4、返回一个可遍历的Iterator接口,并更新相关的监控参数。

我们继续看getMultiple方法。分两种情况处理,分别是netty的和Basic的,Basic的就不讲了,就是通过ConnectionManager去指定的BlockManager那里获取数据,上一章刚好说了。

我们讲一下Netty的吧,这个是需要设置的才能启用的,不知道性能会不会好一些呢?

看NettyBlockFetcherIterator的initialize方法,再看BasicBlockFetcherIterator的initialize方法,发现Basic的不能同时抓取超过48Mb的数据。

在NettyBlockFetcherIterator的sendRequest方法里面,发现它是通过ShuffleCopier来试下的。

这块接下来就是netty的客户端调用的方法了,我对这个不了解。在服务端的处理是在DiskBlockManager内部启动了一个ShuffleSender的服务,最终的业务处理逻辑是在FileServerHandler。

它是通过getBlockLocation返回一个FileSegment,下面这段代码是ShuffleBlockManager的getBlockLocation方法。

获取的方法前面说了,通过reduceId找到文件,再通过mapId找到它的起始位置。但是这里有个疑问了,如果启用了consolidateFiles,一个reduce的所需数据都在一个文件里,是不是就可以把整个文件一起返回呢,而不是通过N个map过不需要来分多次读取?还是害怕一次发送一个大文件容易失败?这就不得而知了。

到这里整个过程就讲完了。可以看得出来Shuffle这块还是做了一些优化的,但是这些参数并没有启用,有需要的朋友可以自己启用一下试试效果。

参考资料:

http://blog.csdn.net/hao707822882/article/details/40581515

http://blog.csdn.net/johnny_lee/article/details/22619585

时间: 2024-10-11 14:24:47

Spark的shuffle剖析!的相关文章

大数据开发:剖析Hadoop和Spark的Shuffle过程差异

一.前言 对于基于MapReduce编程范式的分布式计算来说,本质上而言,就是在计算数据的交.并.差.聚合.排序等过程.而分布式计算分而治之的思想,让每个节点只计算部分数据,也就是只处理一个分片,那么要想求得某个key对应的全量数据,那就必须把相同key的数据汇集到同一个Reduce任务节点来处理,那么Mapreduce范式定义了一个叫做Shuffle的过程来实现这个效果. 二.编写本文的目的 本文旨在剖析Hadoop和Spark的Shuffle过程,并对比两者Shuffle的差异. 三.Had

《Apache Spark源码剖析》

Spark Contributor,Databricks工程师连城,华为大数据平台开发部部长陈亮,网易杭州研究院副院长汪源,TalkingData首席数据科学家张夏天联袂力荐1.本书全面.系统地介绍了Spark源码,深入浅出,细致入微2.提供给读者一系列分析源码的实用技巧,并给出一个合理的阅读顺序3.始终抓住资源分配.消息传递.容错处理等基本问题,抽丝拨茧4.一步步寻找答案,所有问题迎刃而解,使读者知其然更知其所以然 内容简介 书籍计算机书籍 <Apache Spark源码剖析>以Spark

详细探究Spark的shuffle实现

Background 在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量.Spark作为MapReduce框架的一种实现,自然也实现了shuffle的逻辑,本文就深入研究Spark的shuffle是如何实现的,有什么优缺点,与Hadoop MapReduce的shuffle有什么不同. Shuffle Shuffle是MapReduce框架中的一个

【Spark深入学习 -13】Spark计算引擎剖析

----本节内容------- 1.遗留问题解答 2.Spark核心概念 2.1 RDD及RDD操作 2.2 Transformation和Action 2.3 Spark程序架构 2.4 Spark on Yarn运行流程 2.5 WordCount执行原理 3.Spark计算引擎原理 3.1 Spark内部原理 3.2 生成逻辑执行图 3.3 生成物理执行图 4.Spark Shuffle解析 4.1 Shuffle 简史 4.2  Spark Shuffle ·Shuffle Write

Spark 的 Shuffle过程介绍`

Spark的Shuffle过程介绍 Shuffle Writer Spark丰富了任务类型,有些任务之间数据流转不需要通过Shuffle,但是有些任务之间还是需要通过Shuffle来传递数据,比如wide dependency的group by key. Spark中需要Shuffle输出的Map任务会为每个Reduce创建对应的bucket,Map产生的结果会根据设置的partitioner得到对应的bucketId,然后填充到相应的bucket中去.每个Map的输出结果可能包含所有的Redu

Spark的Shuffle过程介绍

Spark的Shuffle过程介绍 Shuffle Writer Spark丰富了任务类型,有些任务之间数据流转不需要通过Shuffle,但是有些任务之间还是需要通过Shuffle来传递数据,比如wide dependency的group by key. Spark中需要Shuffle输出的Map任务会为每个Reduce创建对应的bucket,Map产生的结果会根据设置的partitioner得到对应的bucketId,然后填充到相应的bucket中去.每个Map的输出结果可能包含所有的Redu

【Spark】Spark的Shuffle机制

MapReduce中的Shuffle 在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量. Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时.输出结果须要按key哈希.而且分发到每个Reducer上去.这个过程就是shuffle.因为shu

第37课:Spark中Shuffle详解及作业

1.什么是Spark的Shuffle 图1 Spark有很多算子,比如:groupByKey.join等等都会产生shuffle. 产生shuffle的时候,首先会产生Stage划分. 上一个Stage会把 计算结果放在LocalSystemFile中,并汇报给Driver: 下一个Stage的运行由Driver触发,Executor向Driver请求,把上一个Stage的计算结果抓取过来. 2.Hadoop的Shuffle过程 图2 该图表达了Hadoop的map和reduce两个阶段,通过S

我为什么要区分MR和Spark的shuffle

MR的shuffle阶段,用一张图就可以说明了: map阶段的输出结果会放在缓冲区中,另有一个较小的缓冲区维护了这个缓冲区中键值对+分区号的索引.当该缓冲区快满时,会对其索引进行排序,然后spill到磁盘上.当所有数据都spill到磁盘上后,会对这些碎片文件进行合并,这个过程中同样会发生排序和归并,以便减小传输到reducer上的数据量.reducer通过http连接从mapper上拉去最终的结果,注意是按照分区拉去所需的部分.对于一个reducer由于数据可能来自多个上游,所以仍然要继续排一次