段描述符(转)

  段描述符是GDT和LDT表中的一个数据结构项,用于向处理器提供有关一个段的位置和大小信息以及访问控制的状态信息。每个段描述符的长度是8字节,含有3个主要字段:段基地址、段限长和段属性。段描述符通常由编译器、链接器、加载器或者操作系统来创建,但绝不是应用程序。图4-13给出了所有类型段描述符的一般格式。

 
(点击查看大图)图4-13  段描述符通用格式

一个段描述符中各字段和标志的含义如下:

  (1)段限长字段Limit(Segment limit field):用于指定段的长度。处理器会把段描述符中两个段限长字段组合成一个20位的值,并根据颗粒度标志G来指定段限长Limit值的实际含义。如果G=0,则段长度Limit范围可从1B~1MB,单位是1B;如果G=1,则段长度Limit范围可从4KB~4GB,单位是4KB。

根据段类型中的段扩展方向标志E,处理器以两种不同方式使用段限长Limit。对于向上扩展的段(简称上扩段),逻辑地址中的偏移值范围可以从0到段限长值Limit。大于段限长Limit的偏移值将产生一般保护性异常。对于向下扩展的段(简称下扩段),段限长Limit的含义相反。根据默认栈指针大小标志B的设置,偏移值范围可从段限长Limit到0xFFFFFFFF或0xFFFF。而小于段限长Limit的偏移值将产生一般保护性异常。对于下扩段,减小段限长字段中的值会在该段地址空间底部分配新的内存,而不是在顶部分配。80x86的栈总是向下扩展的,因此这种实现方式很适合扩展堆栈。

  (2)基地址字段Base(Base address field):该字段定义在4GB线性地址空间中一个段字节0所处的位置。处理器会把3个分立的基地址字段组合形成一个32位的值。段基地址应该对齐16字节边界。虽然这不是要求的,但通过把程序的代码和数据段对齐在16字节边界上,可以让程序具有最佳性能。

  (3)段类型字段TYPE(Type field):用行指定段或门(Gate)的类型、说明段的访问种类以及段的扩展方向。该字段的解释依赖于描述符类型标志S指明是一个应用(代码或数据)描述符还是一个系统描述符。TYPE字段的编码对代码、数据或系统描述符都不同,如图4-14所示。

 
(点击查看大图)图4-14  代码段、数据段和系统段描述符格式

  (4)描述符类型标志S(Descriptor type flag):用于指明一个段描述符是系统段描述符(当S=0)还是代码或数据段描述符(当S=1)。

  (5)描述符特权级字段DPL(Descriptor privilege level):用于指明描述符的特权级。特权级范围从0到3。0级特权级最高,3级最低。DPL用于控制对段的访问。

  (6)段存在标志P(Segment present):用于指出一个段是在内存中(P=1)还是不在内存中(P=0)。当一个段描述符的P标志为0时,那么把指向这个段描述符的选择符加载进段寄存器将导致产生一个段不存在异常。内存管理软件可以使用这个标志来控制在某一给定时间实际需要把那个段加载进内存中。这个功能为虚拟存储提供了除分页机制以外的控制。图4-15给出了当P=0时的段描述符格式。当P标志为0时,操作系统可以自由使用格式中标注为可用(Available)的字段位置来保存自己的数据,例如有关不存在段实际在什么地方的信息。

 
(点击查看大图)图4-15  当存在位P=0时的段描述符格式

  (7)D/B(默认操作大小/默认栈指针大小和/或上界限)标志(Default operation size/default stack pointer size and/or upper bound):根据段描述符描述的是一个可执行代码段、下扩数据段还是一个堆栈段,这个标志具有不同的功能。(对于32位代码和数据段,这个标志应该总是设置为1;对于16位代码和数据段,这个标志被设置为0。)

  可执行代码段。此时这个标志称为D标志并用于指出该段中的指令引用有效地址和操作数的默认长度。如果该标志置位,则默认值是32位地址和32位或8位的操作数;如果该标志为0,则默认值是16位地址和16位或8位的操作数。指令前缀0x66可以用来选择非默认值的操作数大小;前缀0x67可用来选择非默认值的地址大小。

  栈段(由SS寄存器指向的数据段)。此时该标志称为B(Big)标志,用于指明隐含堆栈操作(如PUSH、POP或CALL)时的栈指针大小。如果该标志置位,则使用32位栈指针并存放在ESP寄存器中;如果该标志为0,则使用16位栈指针并存放在SP寄存器中。如果堆栈段被设置成一个下扩数据段,这个B标志也同时指定了堆栈段的上界限。

  下扩数据段。此时该标志称为B标志,用于指明堆栈段的上界限。如果设置了该标志,则堆栈段的上界限是0xFFFFFFFF(4GB);如果没有设置该标志,则堆栈段的上界限是0xFFFF(64KB)。

  (8)颗粒度标志G(Granularity):该字段用于确定段限长字段Limit值的单位。如果颗粒度标志为0,则段限长值的单位是字节;如果设置了颗粒度标志,则段限长值使用4KB单位。(这个标志不影响段基地址的颗粒度,基地址的颗粒度总是字节单位。)若设置了G标志,那么当使用段限长来检查偏移值时,并不会去检查偏移值的12位最低有效位。例如,当G=1时,段限长为0表明有效偏移值为0~4095。

  (9)可用和保留位(Available and reserved bits):段描述符第2个双字的位20可供系统软件使用;位21是保留位并应该总是设置为0。

时间: 2024-09-27 08:30:10

段描述符(转)的相关文章

段描述符

; 图示二 ; 高地址………………………………………………………………………低地址 ; | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | ; |7654321076543210765432107654321076543210765432107654321076543210| <- 共 8 字节 ; |--------========--------========--------========--------========| ; ┏━━━┳━━━━━━━┳━━━━━━━━━

操作系统学习(五) 、代码段和数据段描述符

一.代码段和数据段描述符格式 段描述符通用格式如下所示: 代码段和数据段描述符中各个位的含义如下所示: 二.代码段和数据段描述符类型 当段描述符中S标志位(描述符类型)被置位,则该描述符用于代码段或数据段.此时类型字段中最高比特位(第二个双字的位11)用于确定是数据段描述符(复位)还是代码段描述符(置位). 代码段和数据段描述符类型如下所示: 对于数据段描述符,类型字段的低3位(位8,9,10)分别用于表示已访问A,可写W,和扩展方向E,根据可写比特位W的设置,一个数据段可以是只读的,也可以是可

14课 局部段描述符的使用

前面我们使用的都是全局段描述符表,现在我们来分析局部段描述符表的使用. 什么是LDT(Local Descriptor Table)? 局部段描述符表: 本质是一个段描述符表,用于定义段描述符 与GDT类似,可以看做"段描述符的数组" 通过定义选择子访问局部段描述符表中的元素 局部段描述符的选择子和全局描述符的选择子在结构上是完全一样的,3-15位为描述符索引值,LDT选择子的第二位恒为1,1-0位为RPL. 局部段描述符表就是一段内存,里面的每一项是一个局部段描述符(第0项也是有意义

[保护模式]段描述符属性_P位_G位

1.P位 P = 1 段描述符有效 P = 0 段描述符无效 2.段描述符与段寄存器的对应关系 Struct SegMent { WORD Selector; //16位段选择子 WORD Attributes; //16位属性 对应的高4字节,从8位开始到23位结束 刚好16字节 DWORD Base: //32位基址 由三部分组成 最高位为高四字节的24-31位 ,第二部分位高四字节的第0-7位,第三部分为低四字节的16-31位 DWORD Limit: //32位段限长 两部分组成,高位在

保护模式_1_段寄存器_段描述符_段选择子

1 段寄存器 1-1 段寄存器的结构 图示: 结构体表示: struct SegMent { WORD Selector; WORD Attribute; DWORD Base; DWORD Limit; } 1-2 段寄存器的属性探测 可以通过MOV指令进行读写(LDTR和TR除外) 段寄存器成员简介 探测Attribute是否存在 int var=0; int main() { __asm { mov ax, ss //cs不行 cs是可读 可执行 但不可写 mov ds, ax mov d

【从头开始写操作系统系列】页表以及相关的描述符详解

在之前的文章中,我们介绍过 GDT(全局描述符表)以及一致代码段和非一致代码段,这篇文章我们再回到描述符,这次我们来以 ARM 架构为例了解一下页表描述符. 在这篇文章中,我们会看到以下内容: 页表是什么? 一级页表的地址变换过程 由一级描述符来获取二级描述符或者段地址的过程 页表 页表是什么? 页表是一种特殊的数据结构,放在系统空间的页表区,存放逻辑页与物理页帧的对应关系. 每一个进程都拥有一个自己的页表,PCB表中有指针指向页表. (来自百度百科) 通俗的来讲,页表的内容就是一个描述符(关于

My first blog: GDT与基本描述符的结构

参考文章:Intel64 and IA32 Architectures Software Developer's Manual Volume 2 ~ 3 GDT(Global Descriptor Table,全局描述符表)是x86和amd64架构最最基本的数据结构,它存储在内存中,以GDTR记录基地址,是让电脑从实模式跳转到保护模式的台阶.在汇编代码中,我们可以用 lgdt [gdt_base] 来加载GDT到内存中. GDT的结构是这样的: GDTR.base->           ___

【译】x86程序员手册18-6.3.1描述符保存保护参数

6.3 Segment-Level Protection 段级保护 All five aspects of protection apply to segment translation: 段转换时会提供以下5个方面的保护: Type checking 类型检验 Limit checking 限长检验 Restriction of addressable domain 可寻址域的限定 Restriction of procedure entry points 程序入口点的限定 Restricti

进程与进程描述符(task_struct)

一. 进程 进程(Process) 计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础.在早期面向进程设计的计算机结构中,进程是程序的基本执行实体:在当代面向线程设计的计算机结构中,进程是线程的容器.程序是指令.数据及其组织形式的描述,进程是程序的实体. --------------------------------------------------------------- 释义:一段程序的执行过程 特征:动态.独立.异步.并发 结构特征