Huge Page 是否是拯救性能的万能良药?

本文将分析是否Huge Page在任何条件下(特别是NUMA架构下)都能带来性能提升。

文章欢迎转载,但转载时请保留本段文字,并置于文章的顶部 作者:卢钧轶(cenalulu) 本文原文地址:http://cenalulu.github.io/linux/huge-page-on-numa/


准备知识

在阅读本文之前,需要读者至少了解以下基础知识

关于Huge Page

在正式开始本文分析前,我们先大概介绍下Huge Page的历史背景和使用场景。

为什么需要Huge Page 了解CPU Cache大致架构的话,一定听过TLB Cache。Linux系统中,对程序可见的,可使用的内存地址是Virtual Address。每个程序的内存地址都是从0开始的。而实际的数据访问是要通过Physical Address进行的。因此,每次内存操作,CPU都需要从page table中把Virtual Address翻译成对应的Physical Address,那么对于大量内存密集型程序来说page table的查找就会成为程序的瓶颈。所以现代CPU中就出现了TLB(Translation Lookaside Buffer) Cache用于缓存少量热点内存地址的mapping关系。然而由于制造成本和工艺的限制,响应时间需要控制在CPU Cycle级别的Cache容量只能存储几十个对象。那么TLB Cache在应对大量热点数据Virual Address转换的时候就显得捉襟见肘了。我们来算下按照标准的Linux页大小(page size) 4K,一个能缓存64元素的TLB Cache只能涵盖4K*64 = 256K的热点数据的内存地址,显然离理想非常遥远的。于是Huge Page就产生了。 Tips: 这里不要把Virutal Address和Windows上的虚拟内存搞混了。后者是为了应对物理内存不足,而将内容从内存换出到其他设备的技术(类似于Linux的SWAP机制)。

什么是Huge Page 既然改变不了TLB Cache的容量,那么只能从系统层面增加一个TLB Cache entry所能对应的物理内存大小,从而增加TLB Cache所能涵盖的热点内存数据量。假设我们把LinuxPage Size增加到16M,那么同样一个容纳64个元素的TLB Cache就能顾及64*16M = 1G的内存热点数据,这样的大小相较上文的256K就显得非常适合实际应用了。像这种将Page Size加大的技术就是Huge Page


Huge Page是万能的?

了解了Huge Page的由来和原理后,我们不难总结出能从Huge Page受益的程序必然是那些热点数据分散且至少超过64个4K Page Size的程序。此外,如果程序的主要运行时间并不是消耗在TLB Cache Miss后的Page Table Lookup上,那么TLB再怎么大,Page Size再怎么增加都是徒劳。在LWN的一篇入门介绍中就提到了这个原理,并且给出了比较详细的估算方法。简单的说就是:先通过oprofile抓取到TLB Miss导致的运行时间占程序总运行时间的多少,来计算出Huge Page所能带来的预期性能提升。 简单的说,我们的程序如果热点数据只有256K,并且集中在连续的内存page上,那么一个64个entry的TLB Cache就足以应付了。说道这里,大家可能有个疑问了:既然我们比较难预测自己的程序访问逻辑是否能从开启Huge Page中受益。反正Huge Page看上去只改了一个Page Size,不会有什么性能损失。那么我们就索性对所有程序都是用Huge Page好啦。 其实这样的想法是完全错误的!也正是本文想要介绍的一个主要内容,在目前常见的NUMA体系下Huge Page也并非万能钥匙,使用不当甚至会使得程序或者数据库性能下降10%。下面我们重点分析。


Huge Page on NUMA

Large Pages May Be Harmful on NUMA Systems一文的作者曾今做过一个实验,测试Huge Page在NUMA环境的各种不同应用场景下带来的性能差异。从下图可以看到Huge Page对于相当一部分的应用场景并不能很好的提升性能,甚至会带来高达10%的性能损耗。 

性能下降的原因主要有以下两点

CPU对同一个Page抢占增多

对于写操作密集型的应用,Huge Page会大大增加Cache写冲突的发生概率。由于CPU独立Cache部分的写一致性用的是MESI协议,写冲突就意味:

  • 通过CPU间的总线进行通讯,造成总线繁忙
  • 同时也降低了CPU执行效率。
  • CPU本地Cache频繁失效

类比到数据库就相当于,原来一把用来保护10行数据的锁,现在用来锁1000行数据了。必然这把锁在线程之间的争抢概率要大大增加。

连续数据需要跨CPU读取(False Sharing)

从下图我们可以看到,原本在4K小页上可以连续分配,并因为较高命中率而在同一个CPU上实现locality的数据。到了Huge Page的情况下,就有一部分数据为了填充统一程序中上次内存分配留下的空间,而被迫分布在了两个页上。而在所在Huge Page中占比较小的那部分数据,由于在计算CPU亲和力的时候权重小,自然就被附着到了其他CPU上。那么就会造成:本该以热点形式存在于CPU2 L1或者L2 Cache上的数据,不得不通过CPU inter-connect去remote CPU获取数据。 假设我们连续申明两个数组,Array AArray B大小都是1536K。内存分配时由于第一个Page的2M没有用满,因此Array B就被拆成了两份,分割在了两个Page里。而由于内存的亲和配置,一个分配在Zone 0,而另一个在Zone 1。那么当某个线程需要访问Array B时就不得不通过代价较大的Inter-Connect去获取另外一部分数据。

delays re-sulting from traversing a greater physical distance to reach a remote node, are not the most important source of performance overhead. On the other hand, congestion on interconnect links and in memory controllers, which results from high volume of data flowing across the system, can dramatically hurt performance.

Under interleaving, the memory latency re- duces by a factor of 2.48 for Streamcluster and 1.39 for PCA. This effect is entirely responsible for performance improvement under the better policy. The question is, what is responsible for memory latency improvements? It turns out that interleaving dramatically reduces memory controller and interconnect congestion by allevi- ating the load imbalance and mitigating traffic hotspots.

对策

理想

我们先谈谈理想情况。上文提到的论文其实他的主要目的就是讨论一种适用于NUMA架构的Huge Page自动内存管理策略。这个管理策略简单的说是基于Carrefour的一种对Huge Page优化的变种。(注:不熟悉什么是Carrefour的读者可以参看博客之前的科普介绍或者阅读原文) 下面是一些相关技术手段的简要概括:

  • 为了减少只读热点数据跨NUMA Zone的访问,可以将读写比非常高的Page,使用Replication的方式在每个NUMA Zone的Direct内存中都复制一个副本,降低响应时间。
  • 为了减少False Sharing,监控造成大量Cache Miss的Page,并进行拆分重组。将同一CPU亲和的数据放在同一个Page中

现实

谈完了理想,我们看看现实。现实往往是残酷的,由于没有硬件级别的PMU(Performance Monitor Unit)支持,获取精准的Page访问和Cache Miss信息性能代价非常大。所以上面的理想仅仅停留在实验和论文阶段。那么在理想实现之前,我们现在该怎么办呢? 答案只有一个就是测试

实际测试 实际测试的结果最具有说服力。所谓实际测试就是把优化对象给予真实环境的压力模拟。通过对比开启和关闭Huge Page时的性能差别来验证Huge Page是否会带来性能提升。当然大多数应用程序,要想模拟真实环境下的运行情况是非常困难的。那么我们就可以用下面这种理论测试

理论测试 理论测试可以通过profile预估出Huge Page能够带来的潜在提升。具体原理就是计算当前应用程序运行时TLB Miss导致的Page Walk成本占程序总执行时间的占比。当然这种测试方式没有把上文提到的那两种性能损失考虑进去,所以只能用于计算Huge Page所能带来的潜在性能提升的上限。如果计算出来这个值非常低,那么可以认为使用Huge Page则会带来额外的性能损失。具体方法见LWN上介绍的方法 具体的计算公式如下图:

如果没有hardware的PMU支持的话,计算需要用到oprofilecalibrator

总结

并不是所有的优化方案都是0性能损失的。充分的测试和对于优化原理的理解是一个成功优化的前提条件。

时间: 2024-10-25 10:06:10

Huge Page 是否是拯救性能的万能良药?的相关文章

Android之ListView性能优化——万能适配器

如下图,加入现在有一个这样的需求图,你会怎么做?作为一个初学者,之前我都是直接用SimpleAdapter结合一个Item的布局来实现的,感觉这样实现起来很方便(基本上一行代码就可以实现),而且也没有觉得有什么不好的.直到最近在慕课网上看到鸿洋大神讲的“机器人小慕”和“万能适配器”两节课,才对BaseAdapter有所了解.看了鸿洋大神的课程之后,我又上网搜了几个博客,也看了一些源码和文档,于是打算写一个帖子来记录一下自己的学习历程. 在今天的帖子中,我们从一个最基本的实现BaseAdapter

【云和恩墨】性能优化:Linux环境下合理配置大内存页(HugePage)

原创 2016-09-12 熊军 熊军(老熊) 云和恩墨西区总经理 Oracle ACED,ACOUG核心会员 PC Server发展到今天,在性能方面有着长足的进步.64位的CPU在数年前都已经进入到寻常的家用PC之中,更别说是更高端的PC Server:在Intel和AMD两大处理器巨头的努力下,x86 CPU在处理能力上不断提升:同时随着制造工艺的发展,在PC Server上能够安装的内存容量也越来越大,现在随处可见数十G内存的PC Server.正是硬件的发展,使得PC Server的处

Linux主机性能监测

Linux主机作为服务器,在很多高并发的场景下,需要对系统参数进行优化来提升主机性能.而确认主机的性能瓶颈点在哪里就非常重要了,这里主要在以下几个方面进行说明: 1.CPU 2.内存 3.磁盘 4.网络 下面就这几个方面借助网友的经验,简单的总结一下.内容主要来自http://www.vpsee.com/ CPU的监测 在确定是否需要对系统进行优化时,我们首先需要确认系统CPU目前的负载状态.我们可以使用 vmstat命令来查看当前系统的负载. vmstat 工具提供了一种低开销的系统性能观察方

2017版:KVM 性能优化之内存优化

我们说完CPU方面的优化,接着我们继续第二块内容,也就是内存方面的优化.内存方面有以下四个方向去着手: EPT 技术 大页和透明大页 KSM 技术 内存限制 1. EPT技术 EPT也就是扩展页表,这是intel开创的硬件辅助内存虚拟化技术.我们知道内存的使用,是一个逻辑地址跟物理地址转换的过程.虚拟机内部有逻辑地址转成成物理地址的过程,然后再跳出来,虚拟机这块内存又跟宿主机存在逻辑到物理的转换.有了EPT技术,那么能够将虚拟机的物理地址直接翻译为宿主机的物理地址,从而把后面那个转换过程去掉了,

如何快速优化手游性能问题?从UGUI优化说起

WeTest 导读 本文作者从自身多年的Unity项目UI开发及优化的经验出发,从UGUI,CPU,GPU以及unity特有资源等几个维度,介绍了unity手游性能优化的一些方法. 在之前的文章<手游内存占用过高?如何快速定位手游内存问题>中提到,Mono内存和native内存是PSS内存主要的组成部分,mono内存更多的起到内存调用的功能,因此常常成为了开发人员优化内存的起点:而在游戏的其他的进程中,同样有很多因素影响着游戏的性能表现.本文将从UGUI的优化角度,介绍unity游戏性能优化的

Unity3D - 图形性能优化

Unity官方文档中有一篇是讲图形性能优化的,这篇文章无疑是指导Unity开发优化的最佳文章.Unity圣典曾翻译过旧的版本,但是太老旧了,跟最新的文档差别很大.我试着翻译一下最新的文档,点击查看原文链接. Optimizing Graphics Performance  图形性能优化 Good performance is critical to the success of many games. Below are some simple guidelines for maximizing

Java的性能优化

http://www.toutiao.com/i6368345864624144897/?tt_from=mobile_qq&utm_campaign=client_share&app=news_article&utm_source=mobile_qq&iid=4452590055&utm_medium=toutiao_android Java的性能优化 万能的乐乐老师 2016-12-26 17:54 Play Video 做Java基础的朋友可以加群:15449

Python的GIL是什么鬼,多线程性能究竟如何

本文转载地址: http://cenalulu.github.io/python/gil-in-python/ GIL是什么 首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念.就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码.有名的编译器例如GCC,INTEL C++,Visual C++等.Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行

复合页( Compound Page )

复合页(Compound Page)就是将物理上连续的两个或多个页看成一个 独立的大页,它可以用来创建hugetlbfs中使用的大页(hugepage), 也可以用来创建透明大页(transparent huge page)子系统.但是 它不能用在页缓存(page cache)中,这是因为页缓存中管理的都是 单个页. 分配一个复合页的方式是:使用alloc_pages函数,参数order至少为1, 且设置__GFP_COMP标记.因为根据复合页的定义,它通常包括2个或多 个连续的物理内存页,这是