20120920-AVL树定义《数据结构与算法分析》

AVL树节点声明:

1 struct AvlNode
2 {
3     Comparable element;
4     AvlNode *left;
5     AvlNode  *right;
6     int height;
7
8     AvlNode( const Comparable & theElement,AvlNode *lt,AvlNode *rt,int h=0):element ( theElement),left(lt),right(rt),height(t)
9 };

计算节点高度:

1 int height( AvlNode * t) const
2 {
3     return t == NULL ? -1 : t->height;
4 }

向AVL中插入操作:

void insert( const Comparable & x,AvlNode * & t)
{
    if(t == NULL)
        t = new AvlNode ( x,NULL,NULL);
    else if (x < t->element);
    {
        insert( x ,t->left);
        if(height(t->left)-height(t->right) == 2)
            if(x < t->element)
                rotateWithLeftChild(t);
            else
                doubleWithLeftChild(t);
    }
    else if (t->element < x)
    {
        insert(x,t->right);
        if(height(t->right) - height(t->left) == 2)
            if(t->right->element < x)
                rotateWithLeftChild(t);
            else
                doubleWithLeftChild(t);
    }
    else
        ;
    t->height = max(height(t->left),height(t->right))+1;
}

执行单旋转过程:

1 void rotateWithLeftChild(AvlNode * & k2)
2 {
3     AvlNode *k1 = k2->left;
4     k2->left = k1->right;
5     k1->right = k2;
6     k2->height = max(height(k2->left),height(k2->right))+1;
7     k1->height = max(height(k1->left),height(k1->right))+1;
8     k2=k1;
9 }

执行双旋转过程:

void doubleWithLeftChild( AvlNode * & k3)
{
    rotateWithLeftChild(k3->left);
    rotateWithLeftChild(k3);
}
时间: 2024-10-05 05:31:26

20120920-AVL树定义《数据结构与算法分析》的相关文章

自己动手实现java数据结构(七) AVL树

1.AVL树介绍 前面我们已经介绍了二叉搜索树.普通的二叉搜索树在插入.删除数据时可能使得全树的数据分布不平衡,退化,导致二叉搜索树最关键的查询效率急剧降低.这也引出了平衡二叉搜索树的概念,平衡二叉搜索树在此前的基础上,通过一系列的等价变换使二叉搜索树得以始终处于"平衡"的状态,拥有稳定且高效的查询效率. AVL树是最早被计算机科学家发明的自平衡二叉搜索树,AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis,他们在1962年的论文<An a

[javaSE] 数据结构(AVL树基本概念)

AVL树是高度平衡的二叉树,任何节点的两个子树的高度差别<=1 实现AVL树 定义一个AVL树,AVLTree,定义AVLTree的节点内部类AVLNode,节点包含以下特性: 1.key——关键字,对AVL树的节点进行排序 2.left——左子树 3.right——右子树 4.height——高度 如果在AVL树插入节点后可能导致AVL树失去平衡,具体会有四种状态: LL:左左,LeftLeft LR:左右,LeftRight RL:右左,RightLeft RR:右右,RightRight

AVL树的插入与删除

AVL 树要在插入和删除结点后保持平衡,旋转操作必不可少.关键是理解什么时候应该左旋.右旋和双旋.在Youtube上看到一位老师的视频对这个概念讲解得非常清楚,再结合算法书和网络的博文,记录如下. 1.1 AVL 的旋转 一棵AVL树是其每个节点的左子树和右子树的高度差最多为1的二叉查找树(空树高度定义为-1).AVL树插入和删除时都可能破坏AVL的特性,可以通过对树进行修正来保证特性,修正方法称为旋转. 下面以4个插入操作为例,说明不同旋转对应的场景. 1.1.1 LL-R 插入结点为6,沿着

算法学习笔记 平衡二叉树 AVL树

AVL树是最先发明的自平衡二叉查找树, 其增删查时间复杂度都是 O(logn), 是一种相当高效的数据结构.当面对需要频繁查找又经常增删这种情景时,AVL树就非常的适用.[ 博客地址:http://blog.csdn.net/thisinnocence ] AVL树定义 AVL树诞生于 1962 年,由 G.M. Adelson-Velsky 和 E.M. Landis 发明.AVL树首先是一种二叉查找树.二叉查找树是这么定义的,为空或具有以下性质: 若它的左子树不空,则左子树上所有的点的值均小

AVL树-自平衡二叉查找树(Java实现)

在计算机科学中,AVL树是最先发明的自平衡二叉查找树.AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它. 一.AVL树的旋转规律 AVL树的基本操作一般涉及运做同在不平衡的二叉查找树所运做的同样的算法.但是要进行预先或随后做一次或多次所谓的"AVL旋转". 假设由于在二叉排序树上插入

AVL树原理及实现(C语言实现以及Java语言实现)

欢迎探讨,如有错误敬请指正 如需转载,请注明出处http://www.cnblogs.com/nullzx/ 1. AVL定义 AVL树是一种改进版的搜索二叉树.对于一般的搜索二叉树而言,如果数据恰好是按照从小到大的顺序或者从大到小的顺序插入的,那么搜索二叉树就对退化成链表,这个时候查找,插入和删除的时间都会上升到O(n),而这对于海量数据而言,是我们无法忍受的.即使是一颗由完全随机的数据构造成的搜索二叉树,从统计角度去分析,在进行若甘次的插入和删除操作,这个搜索二叉树的高度也不能令人满意.这个

《数据结构与算法分析:C语言描述》复习——第四章“树”——AVL树

2014.06.15 16:22 简介: AVL树是一种高度平衡的二叉搜索树,其命名源自于联合发明算法的三位科学家的名字的首字母.此处“平衡”的定义是:任意节点的左右子树的高度相差不超过1.有了这个平衡的性质,使得AVL树的高度H总是接近log(N),因此各种增删改查的操作的复杂度能够保证在对数级别.没有bad case是AVL树与普通的二叉搜索树的最大区别.为了实现平衡性质,我们需要记录每个节点的高度(或者平衡因子)来检测不平衡的情况.为了修正高度不平衡,需要用到“旋转”的方法,分为单旋转和双

数据结构与算法分析-AVL树深入探讨

.title { text-align: center; margin-bottom: .2em } .subtitle { text-align: center; font-size: medium; font-weight: bold; margin-top: 0 } .todo { font-family: monospace; color: red } .done { font-family: monospace; color: green } .priority { font-fami

数据结构之AVL树

说明:本文仅供学习交流,转载请标明出处,欢迎转载! 在前面的博文中,我们已经介绍了数据结构之二分查找树的相关知识,二分查找的提出主要是为了提高数据的查找效率.同一个元素集合可以对应不同的二分查找树BST,二分查找树的形态依赖于元素的插入顺序.同时我们也已经知道,如果将一个有序的数据集依次插入到二查找树中,此时二分查找树将退化为线性表,此时查找的时间复杂度为o(n).为了防止这一问题的出现,便有了平衡二叉树的存在价值.平衡二叉树从根本上将是为了防止出现斜二叉树的出现,从而进一步提高元素的查找效率,