matrix
Problem Description
Given a matrix with n rows and m columns ( n+m is an odd number ), at first , you begin with the number at top-left corner (1,1) and you want to go to the number at bottom-right corner (n,m). And you must go right or go down every steps. Let the numbers you go through become an array a1,a2,...,a2k. The cost is a1∗a2+a3∗a4+...+a2k−1∗a2k. What is the minimum of the cost?
Input
Several test cases(about 5)
For each cases, first come 2 integers, n,m(1≤n≤1000,1≤m≤1000)
N+m is an odd number.
Then follows n lines with m numbers ai,j(1≤ai≤100)
Output
For each cases, please output an integer in a line as the answer.
Sample Input
2 3
1 2 3
2 2 1
2 3
2 2 1
1 2 4
Sample Output
4
8
题解:令dp[i][j]dp[i][j]表示当前走到第i,ji,j个位置的最小贡献,我们可以假定(i+j)(i+j)为奇数,由该状态可以转移向最多44个位置,就可以了。
///1085422276 #include <cstdio> #include <cmath> #include <cstring> #include <ctime> #include <iostream> #include <algorithm> #include <set> #include <vector> #include <queue> #include <map> #include <stack> using namespace std ; typedef long long ll; #define mem(a) memset(a,0,sizeof(a)) #define pb push_back #define meminf(a) memset(a,127,sizeof(a)); inline ll read() { ll x=0,f=1; char ch=getchar(); while(ch<‘0‘||ch>‘9‘) { if(ch==‘-‘)f=-1; ch=getchar(); } while(ch>=‘0‘&&ch<=‘9‘) { x=x*10+ch-‘0‘; ch=getchar(); } return x*f; } //**************************************** #define maxn 100000+50 #define mod 1000000007 #define inf 1000000007 ll a[1001][1001],b[maxn],k,dp[1001][1001],l[maxn],r[maxn],ans[maxn],D[maxn],n,m; int main() { while(scanf("%d%d",&n,&m)!=EOF) { for(int i=1;i<=n;i++) { for(int j=1;j<=m;j++) { scanf("%I64d",&a[i][j]);dp[i][j]=inf; } } dp[1][1]=0; for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { if(i==1&&j==1) { dp[i][j+1]=min(dp[i][j]+a[i][j]*a[i][j+1],dp[i][j+1]); dp[i+1][j] =min( dp[i][j]+a[i][j]*a[i+1][j],dp[i+1][j]); } else { dp[i][j+2]=min(dp[i][j]+a[i][j+1]*a[i][j+2],dp[i][j+2]); dp[i+2][j] =min( dp[i][j]+a[i+1][j]*a[i+2][j],dp[i+2][j]); dp[i+1][j+1]=min(dp[i][j]+a[i+1][j]*a[i+1][j+1],dp[i+1][j+1]); dp[i+1][j+1] =min( dp[i][j]+a[i][j+1]*a[i+1][j+1],dp[i+1][j+1]); } } } cout<<dp[n][m]<<endl; } return 0; }