python定位性能的工具

python定位性能的工具的相关文章

Python性能分析工具Profile

Python性能分析工具Profile 代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 profile,cProfile 与 hotshot 等.其中 Profiler 是 python 自带的一组程序,能够描述程序运行时候的性能,并提供各种统计帮助用户定位程序的性能瓶颈.Python 标准模块提供三种 profilers:cProfile,profile 以及 hotshot. p

JVM 性能调优实战之:使用阿里开源工具 TProfiler 在海量业务代码中精确定位性能代码

本文是<JVM 性能调优实战之:一次系统性能瓶颈的寻找过程> 的后续篇,该篇介绍了如何使用 JDK 自身提供的工具进行 JVM 调优将 TPS 由 2.5 提升到 20 (提升了 7 倍),并准确定位系统瓶颈:我们应用里静态对象不是太多.有大量的业务线程在频繁创建一些生命周期很长的临时对象,代码里有问题.那么问题来了,如何在海量业务代码里边准确定位这些性能代码?本文将介绍如何使用阿里开源工具 TProfiler 来定位这些性能代码,成功解决掉了 GC 过于频繁的性能瓶颈,并最终在上次优化的基础

[转] Python 代码性能优化技巧

选择了脚本语言就要忍受其速度,这句话在某种程度上说明了 python 作为脚本的一个不足之处,那就是执行效率和性能不够理想,特别是在 performance 较差的机器上,因此有必要进行一定的代码优化来提高程序的执行效率.如何进行 Python 性能优化,是本文探讨的主要问题.本文会涉及常见的代码优化方法,性能优化工具的使用以及如何诊断代码的性能瓶颈等内容,希望可以给 Python 开发人员一定的参考. Python 代码优化常见技巧 代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下

使用 profile 进行python代码性能分析

定位程序性能瓶颈 对代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 profile,cProfile 与 hotshot 等.其中 Profiler 是 python 自带的一组程序,能够描述程序运行时候的性能,并提供各种统计帮助用户定位程序的性能瓶颈.Python 标准模块提供三种 profilers:cProfile,profile 以及 hotshot. profile 的使用

Python 代码性能优化技巧(转)

原文:Python 代码性能优化技巧 Python 代码优化常见技巧 代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下使得程序的运行效率更高,根据 80/20 原则,实现程序的重构.优化.扩展以及文档相关的事情通常需要消耗 80% 的工作量.优化通常包含两方面的内容:减小代码的体积,提高代码的运行效率. 改进算法,选择合适的数据结构 一个良好的算法能够对性能起到关键作用,因此性能改进的首要点是对算法的改进.在算法的时间复杂度排序上依次是: O(1) -> O(lg n) -> O(

Android 常用的性能分析工具详解:GPU呈现模式, TraceView, Systrace, HirearchyViewer(转)

此篇将重点介绍几种常用的Android性能分析工具: 一.Logcat 日志 选取Tag=ActivityManager,可以粗略地知道界面Displaying的时间消耗.当我们打开一个Activity的时候,log会打印一串log如下: I/ActivityManager﹕ Displayed xxx.xxx.xxx/TestActivity: +1s272ms (total +3s843ms) 第一个时间表示系统接受到打开的intent到TestActivity界面显示出来的时间1.272秒

三种Linux性能分析工具的比较

无论是在CPU设计.服务器研发还是存储系统开发的过程中,性能总是一个绕不过去的硬指标.很多时候,我们发现系统功能完备,但就是性能不尽如意,这时候就需要找到性能瓶颈.进行优化.首先我们需要结合硬件特点.操作系统和应用程序的特点深入了解系统内部的运行机制.数据流图和关键路径,最好找出核心模块.建立起抽象模型:接着需要利用各种性能分析工具,探测相关模块的热点路径.耗时统计和占比.在这方面,Linux操作系统自带了多种灵活又具有专对性的工具,此外一些厂家也开源了不少优秀的性能分析工具.下面就结合笔者最近

pyDash:一个基于 web 的 Linux 性能监测工具

pyDash 是一个轻量且基于 web 的 Linux 性能监测工具,它是用 Python 和 Django 加上 Chart.js 来写的.经测试,在下面这些主流 Linux 发行版上可运行:CentOS.Fedora.Ubuntu.Debian.Raspbian 以及 Pidora .-- Ravi Saive 本文导航 -如何在 Linux 系统下安装 pyDash12% pyDash 是一个轻量且基于 web 的 Linux 性能监测工具[1],它是用 Python 和 Django[2

系统级性能分析工具perf的介绍与使用

测试环境:Ubuntu14.04  on VMWare Kernel:3.13.0-32 系统级性能优化通常包括两个阶段:性能剖析(performance profiling)和代码优化.性能剖析的目标是寻找性能瓶颈,查找引发性能问题的原因及热点代码.代码优化的目标是针对具体性能问题而优化代码或编译选项,以改善软件性能. 在性能剖析阶段,需要借助于现有的profiling工具,如perf等.在代码优化阶段往往需要借助开发者的经验,编写简洁高效的代码,甚至在汇编级别合理使用各种指令,合理安排各种指