常见排序算法小结

排序算法经过了很长时间的演变,产生了很多种不同的方法。对于初学者来说,对它们进行整理便于理解记忆显得很重要。每种算法都有它特定的使用场合,很难通用。因此,我们很有必要对所有常见的排序算法进行归纳。

我不喜欢死记硬背,我更偏向于弄清来龙去脉,理解性地记忆。比如下面这张图,我们将围绕这张图来思考几个问题。

上面的这张图来自一个PPT。它概括了数据结构中的所有常见的排序算法。现在有以下几个问题:

1、每个算法的思想是什么? 
     2、每个算法的稳定性怎样?时间复杂度是多少? 
     3、在什么情况下,算法出现最好情况 or 最坏情况? 
     4、每种算法的具体实现又是怎样的?

这个是排序算法里面最基本,也是最常考的问题。下面是我的小结。

一、直接插入排序(插入排序)。

1、算法的伪代码(这样便于理解):    

INSERTION-SORT (A, n)             A[1 . . n] 
     for j ←2 to n 
          do key ← A[ j] 
          i ← j – 1 
          while i > 0 and A[i] > key 
               do A[i+1] ← A[i] 
                    i ← i – 1 
          A[i+1] = key

2、思想:如下图所示,每次选择一个元素K插入到之前已排好序的部分A[1…i]中,插入过程中K依次由后向前与A[1…i]中的元素进行比较。若发现发现A[x]>=K,则将K插入到A[x]的后面,插入前需要移动元素。

3、算法时间复杂度。  
        最好的情况下:正序有序(从小到大),这样只需要比较n次,不需要移动。因此时间复杂度为O(n)  
        最坏的情况下:逆序有序,这样每一个元素就需要比较n次,共有n个元素,因此实际复杂度为O(n­2)  
        平均情况下:O(n­2)

4、稳定性。  
     理解性记忆比死记硬背要好。因此,我们来分析下。稳定性,就是有两个相同的元素,排序先后的相对位置是否变化,主要用在排序时有多个排序规则的情况下。在插入排序中,K1是已排序部分中的元素,当K2和K1比较时,直接插到K1的后面(没有必要插到K1的前面,这样做还需要移动!!),因此,插入排序是稳定的。

     5、代码(c版) blog.csdn.com/whuslei 
          

二、希尔排序(插入排序)

1、思想:希尔排序也是一种插入排序方法,实际上是一种分组插入方法。先取定一个小于n的整数d1作为第一个增量,把表的全部记录分成d1个组,所有距离为d1的倍数的记录放在同一个组中,在各组内进行直接插入排序;然后,取第二个增量d2(<d1),重复上述的分组和排序,直至所取的增量dt=1(dt<dt-1<…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。

例如:将 n 个记录分成 d 个子序列: 
       { R[0],   R[d],     R[2d],…,     R[kd] } 
       { R[1],   R[1+d], R[1+2d],…,R[1+kd] } 
         … 
       { R[d-1],R[2d-1],R[3d-1],…,R[(k+1)d-1] }

 
     说明:d=5 时,先从A[d]开始向前插入,判断A[d-d],然后A[d+1]与A[(d+1)-d]比较,如此类推,这一回合后将原序列分为d个组。<由后向前>

2、时间复杂度。  
     最好情况:由于希尔排序的好坏和步长d的选择有很多关系,因此,目前还没有得出最好的步长如何选择(现在有些比较好的选择了,但不确定是否是最好的)。所以,不知道最好的情况下的算法时间复杂度。  
     最坏情况下:O(N*logN),最坏的情况下和平均情况下差不多。  
     平均情况下:O(N*logN)

3、稳定性。  
     由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。(有个猜测,方便记忆:一般来说,若存在不相邻元素间交换,则很可能是不稳定的排序。)

4、代码(c版) blog.csdn.com/whuslei 
          

三、冒泡排序(交换排序)

1、基本思想:通过无序区中相邻记录关键字间的比较和位置的交换,使关键字最小的记录如气泡一般逐渐往上“漂浮”直至“水面”。 
             2、时间复杂度  
     最好情况下:
正序有序,则只需要比较n次。故,为O(n)  
      最坏情况下:  逆序有序,则需要比较(n-1)+(n-2)+……+1,故,为O(N*N)

3、稳定性  
      排序过程中只交换相邻两个元素的位置。因此,当两个数相等时,是没必要交换两个数的位置的。所以,它们的相对位置并没有改变,冒泡排序算法是稳定的

4、代码(c版) blog.csdn.com/whuslei 
          

四、快速排序(交换排序)

1、思想:它是由冒泡排序改进而来的。在待排序的n个记录中任取一个记录(通常取第一个记录),把该记录放入适当位置后,数据序列被此记录划分成两部分。所有关键字比该记录关键字小的记录放置在前一部分,所有比它大的记录放置在后一部分,并把该记录排在这两部分的中间(称为该记录归位),这个过程称作一趟快速排序。

           说明:最核心的思想是将小的部分放在左边,大的部分放到右边,实现分割。         
     2、算法复杂度  
      最好的情况下:因为每次都将序列分为两个部分(一般二分都复杂度都和logN相关),故为 O(N*logN)  
      最坏的情况下:基本有序时,退化为冒泡排序,几乎要比较N*N次,故为O(N*N)

3、稳定性  
      由于每次都需要和中轴元素交换,因此原来的顺序就可能被打乱。如序列为 5 3 3 4 3 8 9 10 11会将3的顺序打乱。所以说,快速排序是不稳定的!

4、代码(c版) 
           

五、直接选择排序(选择排序)

1、思想:首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此类推,直到所有元素均排序完毕。具体做法是:选择最小的元素与未排序部分的首部交换,使得序列的前面为有序。  
      2、时间复杂度。 
      最好情况下:交换0次,但是每次都要找到最小的元素,因此大约必须遍历N*N次,因此为O(N*N)。减少了交换次数! 
      最坏情况下,平均情况下:O(N*N)

3、稳定性 
      由于每次都是选取未排序序列A中的最小元素x与A中的第一个元素交换,因此跨距离了,很可能破坏了元素间的相对位置,因此选择排序是不稳定的!

4、代码(c版)blog.csdn.com/whuslei 
          

六、堆排序

1、思想:利用完全二叉树中双亲节点和孩子节点之间的内在关系,在当前无序区中选择关键字最大(或者最小)的记录。也就是说,以最小堆为例,根节点为最小元素,较大的节点偏向于分布在堆底附近。 
      2、算法复杂度 
         最坏情况下,接近于最差情况下:O(N*logN),因此它是一种效果不错的排序算法。

3、稳定性 
         堆排序需要不断地调整堆,因此它是一种不稳定的排序

4、代码(c版,看代码后更容易理解!)      
          

七、归并排序

1、思想:多次将两个或两个以上的有序表合并成一个新的有序表。 
       2、算法时间复杂度 
          最好的情况下:一趟归并需要n次,总共需要logN次,因此为O(N*logN) 
          最坏的情况下,接近于平均情况下,为O(N*logN) 
          说明:对长度为n的文件,需进行logN 趟二路归并,每趟归并的时间为O(n),故其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlgn)。

3、稳定性 
         归并排序最大的特色就是它是一种稳定的排序算法。归并过程中是不会改变元素的相对位置的。 
      4、缺点是,它需要O(n)的额外空间。但是很适合于多链表排序。 
      5、代码(略)blog.csdn.com/whuslei

八、基数排序

      1、思想:它是一种非比较排序。它是根据位的高低进行排序的,也就是先按个位排序,然后依据十位排序……以此类推。示例如下: 

        2、算法的时间复杂度 
       分配需要O(n),收集为O(r),其中r为分配后链表的个数,以r=10为例,则有0~9这样10个链表来将原来的序列分类。而d,也就是位数(如最大的数是1234,位数是4,则d=4),即"分配-收集"的趟数。因此时间复杂度为O(d*(n+r))。

3、稳定性 
          基数排序过程中不改变元素的相对位置,因此是稳定的!

4、适用情况:如果有一个序列,知道数的范围(比如1~1000),用快速排序或者堆排序,需要O(N*logN),但是如果采用基数排序,则可以达到O(4*(n+10))=O(n)的时间复杂度。算是这种情况下排序最快的!!

5、代码(略)

总结: 每种算法都要它适用的条件,本文也仅仅是回顾了下基础。如有不懂的地方请参考课本。 
     如有转载,请注明:blog.csdn.com/whuslei

时间: 2024-10-23 15:10:27

常见排序算法小结的相关文章

【整理】常见排序算法及其时间复杂度总结

原文出处: 1. 白话经典算法系列之八 MoreWindows白话经典算法之七大排序总结篇 2. 面试常用算法总结--排序算法(java版) 3. 常见排序算法小结 本篇主要整理了冒泡排序,直接插入排序,直接选择排序,希尔排序,归并排序,快速排序,堆排序七种常见算法,是从上面三篇博文中摘抄整理的,非原创. 一.冒泡排序 主要思路是: 通过交换相邻的两个数变成小数在前大数在后,这样每次遍历后,最大的数就"沉"到最后面了.重复N次即可以使数组有序. 冒泡排序改进1: 在某次遍历中,如果没有

常见排序算法(一) MergeSort

算法思想灰常重要,常见的用到分治思想的算法包括快速排序,归并,二分搜搜,大整数乘法等(参考 http://blog.csdn.net/com_stu_zhang/article/details/7233761,归纳很到位) 简单用归并对一个数组排序 思路: 简单来说对一个数组,只要他的左右两部分都是有序的,那么简单合并就ok了,那么左右两部分可以进一步划分各自的左右两部分----明显就是要递归了 算法:归并排序 1. 将数组一分为二,subArray1 和subArray2 2. 归并排序sub

常见排序算法(java实现)

常见排序算法介绍 冒泡排序 代码: public class BubbleSort { public static void sort(int[] array) { int tValue; for (int i = 0; i < array.length; i++) { for (int j = i; j < array.length; j++) { if (array[i] > array[j]) { tValue = array[i]; array[i] = array[j]; ar

常见排序算法(冒泡、选择、插入、快速、归并C++实现)

常见排序算法(冒泡.选择.插入.快速.归并C++实现) #include <iostream> using namespace std; // 冒泡排序 void bubbleSort (int data[], size_t size) { for (size_t i = 0; i < size - 1; ++i) { bool ordered = true; for (size_t j = 0; j < size - 1 - i; ++j) if (data[j+1] <

几种常见排序算法

几种常见排序算法 几种常见排序算法 写在前面 基础介绍 初级排序算法 selection sort选择排序 insertion sort插入排序 ShellSort希尔排序 shuffing不是排序算法 merge sort归并排序 Abstract in-place merge原地归并的抽象方法 Top-down mergesort自顶向下的归并排序 Bottom-up mergesort自底向上的归并排序 quicksort 三向切分的快速排序 Heapsort堆排序 总结和比较 命题 本文

第六章 常见排序算法

上章回顾 二叉树的定义 树深度的定义 什么样的二叉树是满二叉树 中序遍历的规则 [email protected]:Kevin-Dfg/[email protected]:Kevin-Dfg/Data-Structures-and-Algorithm-Analysis-in-C.git 第六章 第六章 常见排序算法 常见排序算法 [email protected]:Kevin-Dfg/[email protected]:Kevin-Dfg/Data-Structures-and-Algorith

常见排序算法总结(java实现)

所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作.常见的排序算法有选择排序,插入排序,希尔排序,归并排序和快速排序 由于在排序的过程中不可避免的要涉及到比较和交换,所以将他们抽取为两个单独的函数,如下所示 //为了排序代码的通用性,这里假定待排序的元素实现了Comparable接口 private static boolean less(Comparable v ,Comparable w){ return v.compareTo(w)<0; } priva

十种常见排序算法

1.常见算法分类 十种常见排序算法一般分为以下几种: (1)非线性时间比较类排序:交换类排序(快速排序和冒泡排序).插入类排序(简单插入排序和希尔排序).选择类排序(简单选择排序和堆排序).归并排序(二路归并排序和多路归并排序): (2)线性时间非比较类排序:计数排序.基数排序和桶排序. 总结: (1)在比较类排序中,归并排序号称最快,其次是快速排序和堆排序,两者不相伯仲,但是有一点需要注意,数据初始排序状态对堆排序不会产生太大的影响,而快速排序却恰恰相反. (2)线性时间非比较类排序一般要优于

常见排序算法(PHP实现)

function InsertSort($arr){ $num = count($arr); for($i = 1; $i < $num; $i++){ $key = $arr[$i]; for($j = $i - 1; $j >= 0; $j--){ if($arr[$j] > $key){ $arr[$j + 1] = $arr[$j]; $arr[$j] = $key; } } } return $arr; } function BubbleSort($arr){ $num = c