learning rate+feature +polynomial regression

well ,I have to say it‘s quite wise to trans cube into mutiple feature.Like you have y=2+3x+4x^2 +...and you choose to use y=a+3x1+4x2+....You have one feature ,but you rather more feature than cubed(three times).Also U have to use feature scaling carefully.Cause they are not really multiple features.You need to guarantee their relationship static.

let‘s talk about learning rate.We know it could work when it‘s static.Then the value of it could be crucial.Too big will not convergence.Too small will be slow.Though the video did‘t point out , I think the feature scaling should be the factor affect learning rate.Like your scaling is -1~1.you don‘t want 500 to be your learning rate.Obviously it‘s too big.The count pic of unfited rate have been showed in the video.

I do advise you not using vedio in chinese version.If you can‘t understand through listening.Then use subtitles in English.It will help you with test.

And as I‘ve warned you before ,he asked about the feature scaling .And I‘m sure you can fix that.

Another thing is about decrease your features.Like you can replace width and length with square.

  

时间: 2024-10-10 23:12:57

learning rate+feature +polynomial regression的相关文章

machine learning (6)---how to choose features, polynomial regression

可以选择合适的feature 例如在预测房子的价格与地基的长与宽之间的关系时,可以将地基的长与宽(两个feature)可以合并为一个feature---面积 polynomial regression quadratic model cubic model square root function

Andrew Ng Machine Learning 专题【Linear Regression】

此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 3: Logistic Regression & Regularization 笔记:http://blog.csdn.net/ironyoung/ar

CheeseZH: Stanford University: Machine Learning Ex5:Regularized Linear Regression and Bias v.s. Variance

源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In this exercise, you will implement regularized linear regression and use it to study models with different bias-variance properties. 1. Regularized Lin

关于Increased rates of convergence through learning rate adaptation一文的理解

原文地址:http://www.researchgate.net/profile/Robert_Jacobs9/publication/223108796_Increased_rates_of_convergence_through_learning_rate_adaptation/links/0deec525d8f8dd5ade000000.pdf 已经看了CNN,rbm,sae等网络及算法,所有网络在训练时都需要一个learning rate,一直以来都觉得这个量设为定值即可,现在才发现其实

Machine learning with python - Linear Regression

Machine learning with python Linear Regression 数据来自 cs229  Problem Set 1 (pdf) Data: q1x.dat, q1y.dat, q2x.dat, q2y.dat PS1 Solution (pdf) 从左上往右下 batchGradientDescent的cost随迭代次数的增加而下降,和收敛结果 stochasticGradientDescent的cost随迭代次数的增加而下降,和收敛结果 normalEquatio

Machine Learning—Classification and logistic regression

印象笔记同步分享:Machine Learning-Classification and logistic regression

梯度下降实用技巧II之学习率 Gradient descent in practice II -- learning rate

梯度下降实用技巧II之学习率 Gradient descent in practice II -- learning rate 梯度下降算法中的学习率(learning rate)很难确定,下面介绍一些寻找的实用技巧.首先看下如何确定你的梯度下降算法正在正常工作:一般是要画出代价函数 和迭代次数之间的图像,如下图所示.如果随着迭代次数的增加不断下降,那么说明梯度下降算法工作的很好,当到达一定迭代次数后基本持平时,说明已经收敛了,可以选取此时的作为参数.一般选取一个数小于,如果下降的幅度小于,则认

machine learning (4)---learning rate

degugging:make sure gradient descent is working correctly cost function(J(θ)) of Number of iteration 运行错误的图象是什么样子的 运行正确的图象是什么样子的 how to choose learning rate(∂) 若learning rate太小 若learning rate太大 可供选择的一些learning rate值 如何选择最佳的learning rate

Batchsize与learning rate

https://www.zhihu.com/question/64134994 1.增加batch size会使得梯度更准确,但也会导致variance变小,可能会使模型陷入局部最优: 2.因此增大batch size通常要增大learning rate,比如batch size增大m倍,lr增大m倍或者sqrt(m)倍,但并不固定: 3.learning rate的增加通常不能直接增加太大,一般会通过warm up逐步增大: 4.warm up策略参考 Bag of Freebies for