POJ-3281 Dining 最大流 拆点

题目链接:https://cn.vjudge.net/problem/POJ-3281

题意

题意找kuangbin的用了。

有N头牛,F个食物,D个饮料。

N头牛每头牛有一定的喜好,只喜欢几个食物和饮料。

每个食物和饮料只能给一头牛。一头牛只能得到一个食物和饮料。

而且一头牛必须同时获得一个食物和一个饮料才能满足。问至多有多少头牛可以获得满足。

思路

建图如下就完事了:

提交过程

AC

代码

#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=400+20, INF=1e8;
struct Edge{
    int from,to,cap,flow;
    Edge(int u,int v,int c,int f):
        from(u), to(v), cap(c), flow(f) {}
};
struct Dinic{
    int n, m, s, t;
    vector<int> G[maxn];
    vector<Edge> edges;
    bool vis[maxn];
    int dep[maxn], cur[maxn];
    void init(int n){
        this->n=n;
        for (int i=0;i<=n;i++) G[i].clear();
        edges.clear();
    }
    void addEdge(int from, int to, int cap){
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool bfs(void){
        memset(vis, false, sizeof(vis));
        queue<int> Q;
        vis[s]=true;
        dep[s]=0;

        Q.push(s);
        while(!Q.empty()){
            int x=Q.front(); Q.pop();
            for(int i=0;i<G[x].size();i++){
                Edge &e=edges[G[x][i]];
                if(!vis[e.to] && e.cap>e.flow){
                    vis[e.to]=1;
                    dep[e.to]=dep[x]+1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int dfs(int x, int a){
        if(x==t || a==0)return a;
        int flow=0, f;
        for(int &i=cur[x];i<G[x].size();i++) {
            Edge &e=edges[G[x][i]];
            if(dep[e.to]==dep[x]+1 && (f=dfs(e.to, min(a, e.cap-e.flow)))>0){
                e.flow+=f;
                edges[G[x][i]^1].flow-=f;
                flow+=f;
                a-=f;
                if(a==0)break;
            }
        }
        return flow;
    }
    int maxFlow(int s, int t){
        this->s=s; this->t=t;

        int flow=0;
        while(bfs()){
            memset(cur, 0, sizeof(cur));
            flow+=dfs(s, INF);
        }
        return flow;
    }
}dinic;

int n, f, d, psize;
int main(void){
    int from, to, cap, fn, dn, tmp;
    while (scanf("%d%d%d", &n, &f, &d)==3 && n){
        dinic.init(n*2+f+d+2);
        psize=f+d+2;
        for (int i=0; i<f; i++)
            dinic.addEdge(1, i+3, 1);

        for (int i=0; i<d; i++)
            dinic.addEdge(i+f+3, 2, 1);

        for (int i=0; i<n; i++){
            int in=psize+1, out=psize+2;
            psize+=2;

            scanf("%d%d", &fn, &dn);
            for (int j=0; j<fn; j++){
                scanf("%d", &tmp);
                dinic.addEdge(tmp+2, in, 1);
            }
            for (int j=0; j<dn; j++){
                scanf("%d", &tmp);
                dinic.addEdge(out, tmp+f+2, 1);
            }
            dinic.addEdge(in, out, 1);
        }
        printf("%d\n", dinic.maxFlow(1, 2));
    }

    return 0;
}
Time Memory Length Lang Submitted
16ms 304kB 2746 C++ 2018-08-17 03:17:52

原文地址:https://www.cnblogs.com/tanglizi/p/9494794.html

时间: 2024-10-27 11:53:12

POJ-3281 Dining 最大流 拆点的相关文章

POJ 3281 Dining(最大流)

POJ 3281 Dining 题目链接 题意:n个牛,每个牛有一些喜欢的食物和饮料,每种食物饮料只有一个,问最大能匹配上多少只牛每个牛都能吃上喜欢的食物和喜欢的饮料 思路:最大流,建模源点到每个食物连一条边,容量为1,每个饮料向汇点连一条边容量为1,然后由于每个牛有容量1,所以把牛进行拆点,然后食物连向牛的入点,牛的出点连向食物,跑一下最大流即可 代码: #include <cstdio> #include <cstring> #include <queue> #in

POJ 3281 Dining(网络流拆点)

[题目链接] http://poj.org/problem?id=3281 [题目大意] 给出一些食物,一些饮料,每头牛只喜欢一些种类的食物和饮料, 但是每头牛最多只能得到一种饮料和食物,问可以最多满足几头牛的要求 即同时得到喜欢的饮料和食物 [题解] 建立一个源点连接食物,汇点连接饮料,中间连接牛, 为了防止同一头牛占用多个资源,所以我们对牛进行拆点,限流为1. [代码(Isap)] #include <cstdio> #include <cstring> using names

POJ 3281 Dining (最大流)

Dining Time Limit: 2000MS   Memory Limit: 65536K       Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others. Farmer John has cooked fabulous meals for his cows, but he forgot

poj 3281 Dining(网络流+拆点)

Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 20052   Accepted: 8915 Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others. Farmer John has cooked fabulo

POJ 3281 Dining 最大流 Dinic算法

Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10768   Accepted: 4938 Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others. Farmer John has cooked fabulo

【网络流#7】POJ 3281 Dining 最大流 - 《挑战程序设计竞赛》例题

不使用二分图匹配,使用最大流即可,设源点S与汇点T,S->食物->牛->牛->饮料->T,每条边流量为1,因为流过牛的最大流量是1,所以将牛拆成两个点. 前向星,Dinic,复杂度:O(V2E) 直接套用模板 #include<cstdio> #include<cstring> #include<cmath> #include<iostream> #include<algorithm> #include<set

POJ 3281(Dining-网络流拆点)[Template:网络流dinic]

Language: Default Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9631   Accepted: 4446 Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others. Farmer John

POJ 3281 Dining(最大流建图 &amp;&amp; ISAP &amp;&amp; 拆点)

题目链接:http://poj.org/problem?id=3281 努力练建图ing!!! 题意:有 N 头牛,有 F 种食物和 D 种饮料,每种食物或饮料只能供一头牛享用,且每头牛只享用一种食物和一种饮料. 第2行-第N+1行.是牛i 喜欢A种食物,B种饮料,及食物种类列表和饮料种类列表. 问最多能使几头牛同时享用到自己喜欢的食物和饮料.->最大流. 本题难点是建图: 思路:一般都是左边一个集合表示源点与供应相连,右边一个集合表示需求与汇点相连. 但是本题,牛作为需求仍然是一个群体,但是供

poj 3281 Dining(最大流)

poj 3281 Dining Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others. Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their prefer

POJ 3281 Dining(网络最大流)

http://poj.org/problem?id=3281 Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9121   Accepted: 4199 Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.