机器学习的数学基础 - 特征分解与奇异值分解

特征分解

奇异值分解(Singular Value Decomposition, SVD)

原文地址:https://www.cnblogs.com/DicksonJYL/p/9547328.html

时间: 2024-10-02 06:37:23

机器学习的数学基础 - 特征分解与奇异值分解的相关文章

【机器学习】从特征分解,奇异值分解到主成分分析

1.理解特征值,特征向量 一个对角阵\(A\),用它做变换时,自然坐标系的坐标轴不会发生旋转变化,而只会发生伸缩,且伸缩的比例就是\(A\)中对角线对应的数值大小. 对于普通矩阵\(A\)来说,是不是也可以找到这样的向量,使得经\(A\)变换后,不改变方向而只伸缩?答案是可以的,这种向量就是\(A\)的特征向量,而对应的伸缩比例就是对应的特征值. 特征值会有复数是为什么? 首先要知道,虚数单位\(i\)对应的是旋转\(90^o\),那么,如果特征值是复数,则对应的特征向量经矩阵\(A\)变换后将

特征分解 奇异值分解

特征分解:将矩阵分 解成一组特征向量和特征值. 方阵 A 的 特征向量(eigenvector)是指与 A 相乘后相当于对该向量进行缩放 的非零向量 v 标量 λ 被称为这个特征向量对应的 特征值(eigenvalue).(类似地,我们也可以 定义 左特征向量(left eigenvector)v?A = λv?,但是通常我们更关注 右特征向量 (right eigenvector)) 如果V是A的特征向量,那么任何放缩后的 sv (s为任意非零实数)也是A的特征向量,所以A的特征向量我们只考虑

特征值分解,奇异值分解(SVD)

特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征. 1. 特征值: 如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式: 写成矩阵形式: 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量. 2. 特征分解: 特征值分解是将一个矩阵分解成下面的形式: 其中Q是这个矩阵A的特征向量组成的矩阵,正交矩阵是可逆的.Σ?=?diag(λ1,?λ2,

矩阵分解之奇异值分解

矩阵分解之奇异值分解 引言 首先说矩阵,矩阵是一个难理解的数学描述,不管是在本科阶段的线性代数课上还是在研究生阶段的矩阵分析课上,都没有使我对矩阵产生什么好感,虽然考试也能过关,基本知识也能理解,但就是不知道有卵用.直到接触了机器学习相关算法论述时,发现好多的机器学习算法最终的描述都是通过矩阵分析相关知识推导而来,才知道了矩阵分析是非常有用的,但是到现在为止,还是没有什么好感.然后为什么要讲到奇异值分解,主要是在读<数学之美>中读到了采用奇异值分解解决文本分类问题的巧妙之处.首先在新闻分类中通

矩阵特征值分解与奇异值分解含义解析及应用

此文有一半转载自他出,主要在这进行个整理,具体内容文中都有相关的转载链接. 特征值与特征向量的几何意义 矩阵的乘法是什么,别只告诉我只是"前一个矩阵的行乘以后一个矩阵的列",还会一点的可能还会说"前一个矩阵的列数等于后一个矩阵的行数才能相乘",然而,这里却会和你说--那都是表象. 矩阵乘法真正的含义是变换,我们学<线性代数>一开始就学行变换列变换,那才是线代的核心--别会了点猫腻就忘了本--对,矩阵乘法 就是线性变换,若以其中一个向量A为中心,则B的作用

机器学习的数学基础

一.概述 我们知道,机器学习的特点就是:以计算机为工具和平台,以数据为研究对象,以学习方法为中心:是概率论.线性代数.数值计算.信息论.最优化理论和计算机科学等多个领域的交叉学科.所以本文就先介绍一下机器学习涉及到的一些最常用的的数学知识. 二.线性代数 2-1.标量 一个标量就是一个单独的数,一般用小写的的变量名称表示. 2-2.向量 一个向量就是一列数,这些数是有序排列的.用过次序中的索引,我们可以确定每个单独的数.通常会赋予向量粗体的小写名称.当我们需要明确表示向量中的元素时,我们会将元素

特征值分解和奇异值分解

特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性.就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生

矩阵的“特征值分解”和“奇异值分解”区别

在信号处理中经常碰到观测值的自相关矩阵,从物理意义上说,如果该观测值是由几个(如 K 个)相互统计独立的源信号线性混合而成,则该相关矩阵的秩或称维数就为 K,由这 K 个统计独立信号构成 K 维的线性空间,可由自相关矩阵最大 K 个特征值所对应的特征向量或观测值矩阵最大 K 个奇异值所对应的左奇异向量展成的子空间表示,通常称信号子空间,它的补空间称噪声子空间,两类子空间相互正交.理论上,由于噪声的存在,自相关矩阵是正定的,但实际应用时,由于样本数量有限,可能发生奇异,矩阵条件数无穷大,造成数值不

矩阵特征分解介绍及雅克比 Jacobi 方法实现特征值和特征向量的求解 C++/OpenCV/Eigen

对角矩阵(diagonal matrix):只在主对角线上含有非零元素,其它位置都是零,对角线上的元素可以为0或其它值.形式上,矩阵D是对角矩阵,当且仅当对于所有的i≠j, Di,j= 0. 单位矩阵就是对角矩阵,对角元素全部是1.我们用diag(v)表示一个对角元素由向量v中元素给定的对角方阵.对角矩阵受到关注的部分原因是对角矩阵的乘法计算很高效.计算乘法diag(v)x,我们只需要将x中的每个元素xi放大vi倍.换言之,diag(v)x = v⊙x.计算对角方阵的逆矩阵也很高效.对角方阵的逆