数据最终一致性方案设计

https://servicecomb.incubator.apache.org/cn/docs/saga_pack_design/

https://servicecomb.incubator.apache.org/cn/docs/distributed_saga_1/

https://servicecomb.incubator.apache.org/cn/docs/distributed_saga_2/

https://servicecomb.incubator.apache.org/cn/docs/distributed_saga_3/

https://blog.csdn.net/fl63zv9zou86950w/article/details/78393439

原文地址:https://www.cnblogs.com/tcals/p/9382611.html

时间: 2024-10-13 19:25:23

数据最终一致性方案设计的相关文章

Cassandra如何保证数据最终一致性

Cassandra如何保证数据最终一致性:1.逆熵机制(Anti-Entropy)使用默克尔树(Merkle Tree)来确认多个副本数据一致,对于不一致数据,根据时间戳来获取最新数据. 2.读修复机制(Read Repair)当Cassandra读数据时,需要根据读一致级别设定读取N个节点的副本数据,并按照时间戳返回最新数据给用户后,会对所有副本数据进行检测和修复,确保所有副本数据一致. 3.提示移交机制(Hinted Handoff)当Cassandra写数据时,需要根据写一致性级别将数据写

NoSQL数据库:数据的一致性

NoSQL数据库:数据的一致性 读取一致性 强一致性 在任何时间访问集群中任一结点,得到的数据结果一致: 用户一致性       对同一用户,访问集群期间得到的数据一致:        解决用户一致性:使用粘性会话,将会话绑定到特定结点来处理:        这样会降低负载均衡器的性能: 最终一致性       集群中各结点间由于数据同步不及时造成暂时的数据不一致,但数据同步完成后,最终具有一致性: 更新一致性 悲观方式 使用写锁 大幅降低系统响应能力 可能导致死锁 乐观方式 先让冲突发生,再检

MySql备份时如何保持数据的一致性

对mysql数据进行备份,常见的方式如以下三种,可能有很多人对备份时数据一致性并不清楚 1.直接拷贝整个数据目录下的所有文件到新的机器.优点是简单.快速,只需要拷贝:缺点也很明显,在整个备份过程中新机器处于完全不可用的状态,且目的无法释放源数据文件中因为碎片导致的空间浪费和无法回收已发生扩展的innodb表空间. 2.用xtrabackup进行热备.优点是备份过程中可继续提供服务:缺点和第一种方法差不多,目的分区无法释放源数据文件中因为碎片导致的空间浪费和无法回收已发生扩展的innodb表空间.

分布式事务:两段式提交(最终一致性)

[MySQL如何实现分布式事务?] http://www.linuxidc.com/Linux/2013-10/91925.htm Innodb存储引擎支持XA事务,通过XA事务可以支持分布式事务的实现.分布式事务指的是允许多个独立的事务资源(transac tional resources)参与一个全局的事务中.事务资源通常是关系型数据库系统,也可以是其它类型的资源. 全局事务要求在其中所有参与的事务要么全部提交,要么全部回滚,这对于事务原有的ACID要求又有了提高.另外,在使用分布式事务时候

[转]CAP原理与最终一致性 强一致性 透析

在足球比赛里,一个球员在一场比赛中进三个球,称之为帽子戏法(Hat-trick).在分布式数据系统中,也有一个帽子原理(CAP Theorem),不过此帽子非彼帽子.CAP原理中,有三个要素: 一致性(Consistency) 可用性(Availability) 分区容忍性(Partition tolerance) CAP原理指的是,这三个要素最多只能同时实现两点,不可能三者兼顾.因此在进行分布式架构设计时,必须做出取舍.而对于分布式数据系统,分区容忍性是基本要求,否则就失去了价值.因此设计分布

CAP原理与强一致性、最终一致性

CAP原理指的是,这三个要素最多只能同时实现两点,不可能三者兼顾.因此在进行分布式架构设计时,必须做出取舍.而对于分布式数据系统,分区容忍性是基本要求,否则就失去了价值.因此设计分布式数据系统,就是在一致性和可用性之间取一个平衡.对于大多数web应用,其实并不需要强一致性,因此牺牲一致性而换取高可用性,是目前多数分布式数据库产品的方向. 当然,牺牲一致性,并不是完全不管数据的一致性,否则数据是混乱的,那么系统可用性再高分布式再好也没有了价值.牺牲一致性,只是不再要求关系型数据库中的强一致性,而是

分布式事务最终一致性常用方案

目前的应用系统,不管是企业级应用还是互联网应用,最终数据的一致性是每个应用系统都要面临的问题,随着分布式的逐渐普及,数据一致性更加艰难,但是也很难有银弹的解决方案,也并不是引入特定的中间件或者特定的开源框架能够解决的,更多的还是看业务场景,根据场景来给出解决方案.根据笔者最近几年的了解,总结了几个点,更多的应用系统在编码的时候,更加关注数据的一致性,这样系统才是健壮的. 一.基础理论 目前关于事务的几大理论包括:ACID事务特性,CAP分布式理论,以及BASE等.ACID在数据库事务中体现,CA

CAP原理和最终一致性(Eventually Consistency)

在足球比赛里,一个球员在一场比赛中进三个球,称之为帽子戏法(Hat-trick).在分布式数据系统中,也有一个帽子原理(CAP Theorem),不过此帽子非彼帽子.CAP原理中,有三个要素: 一致性(Consistency) 可用性(Availability) 分区容忍性(Partition tolerance) CAP原理指的是,这三个要素最多只能同时实现两点,不可能三者兼顾.因此在进行分布式架构设计时,必须做出取舍.而对于分布式数据系统,分区容忍性是基本要求,否则就失去了价值.因此设计分布

Eventually Consistent(最终一致性)(转)

应该说搞分布式系统必读的文章了,转过来,这是2008年12月Werner revise过的版本,先贴上内容简介:分布式系统的CAP理论 CAP理论(data consistency, system availability, and tolerance),也就是数据一致性,系统可用性和网络分区容错性,在一个分布式系统中CAP是不能同时保证的,最多只能同时满足两个.如果一个系统不必考虑网络分区容错性,那么它可以同时取得数据一致性和可用性,这通常可以通过处理协议来保证.    然而不考虑网络分区容错