codeforce #505D - Recovering BST 区间DP

1025D

题意:

  有一个递增序列,问能不能构建出一颗每条边的端点值都不互质的二叉排序树。

思路:

  区间DP,但是和常见的区间DP不一样,

  这里dp【i】【j】表示的是区间【i,j】能否以i为根建立一个小二叉排序树。

  所以可以得到dp【i】【j】 为true, 要求在【i+1,j】中有一个k,dp【k】【i+1】和dp【k】【j】都为true。

  或者在i点的左边取件中,即要求在【j】【i-1】中有一个k,dp【k】【j】和dp【k】【i-1】都为true。

#include <algorithm>
#include  <iterator>
#include  <iostream>
#include   <cstring>
#include   <cstdlib>
#include   <iomanip>
#include    <bitset>
#include    <cctype>
#include    <cstdio>
#include    <string>
#include    <vector>
#include     <cmath>
#include     <queue>
#include      <list>
#include       <map>
#include       <set>
using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000")  //c++
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue

typedef long long ll;
typedef unsigned long long ull;

typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3;

//priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl ‘\n‘

#define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A)  //用来压行
#define REP(i , j , k)  for(int i = j ; i <  k ; ++i)
//priority_queue<int ,vector<int>, greater<int> >que;

const ll mos = 0x7FFFFFFFLL;  //2147483647
const ll nmos = 0x80000000LL;  //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3fLL; //18
const int mod = 998244353;

const double PI=acos(-1.0);

// #define _DEBUG;         //*//
#ifdef _DEBUG
freopen("input", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
/*-----------------------showtime----------------------*/
        const int maxn = 800;
        ll a[maxn],mp[maxn][maxn],dp[maxn][maxn];
        ll gcd(ll a,ll b){
            if(b==0)return a;
            return gcd(b,a%b);
        }

int main(){
        int n;
        scanf("%d", &n);
        for(int i=1; i<=n; i++){
            scanf("%I64d", &a[i]);
        }

        for(int i=1; i<=n; i++){
            for(int j=1; j<=n; j++)
            {
                if(i==j)dp[i][j] = 1;
                mp[i][j] = (gcd(a[i],a[j]) == 1?0:1);
            }
        }

        for(int len = 1; len <= n; len++){
            for(int i=1; i<=n; i++){
                int le = i - len;
                if(le >= 1){
                    for(int k = le ; k < i; k++){
                        if(dp[k][le] && dp[k][i-1] && mp[k][i]){
                            dp[i][le] = 1;
                            break;
                        }
                    }
                }

                int ri = i + len;
                if(ri <= n){
                    for(int k = i+1; k <= ri ; k++){
                        if(dp[k][i+1] && dp[k][ri] && mp[i][k]){
                            dp[i][ri] = 1;
                            break;
                        }
                    }
                }
            }
        }

        for(int i=1; i<=n; i++){
            if(dp[i][1] && dp[i][n]){
                    puts("Yes");
                    return 0;
            }
        }
        puts("No");
        return 0;
}

CF1025D

原文地址:https://www.cnblogs.com/ckxkexing/p/9531045.html

时间: 2024-10-12 12:12:50

codeforce #505D - Recovering BST 区间DP的相关文章

【CodeForce】509F Progress Monitoring(树形情景区间DP)

题目大意:有一段深搜的代码,是遍历一个邻接矩阵,然后输出一个序列,这个邻接矩阵的原形是一棵树,那么现在就是要你根据序列,求出最多有多少个不同的树遍历之后可以得到相同的序列. 思路:这道题属于简单的区间DP,仔细点想就可以了. 第一种方法也是最直接的思路. 令dp[i][j]表示的是以i这个点为根,其余点为它的子树时,符合条件的最大个数. 从样例可以想到 1 2 3由于3和2交换之后,依然不会影响输出,所以假如1 2 xxx 3xxx,交换2,3节点下的树,也是不会影响序列的. 突破点就在此,dp

uva 10304 - Optimal Binary Search Tree 区间dp

题目链接 给n个数, 这n个数的值是从小到大的, 给出个n个数的出现次数. 然后用他们组成一个bst.访问每一个数的代价是这个点的深度*这个点访问的次数. 问你代价最小值是多少. 区间dp的时候, 如果l >= r, 那么返回0, l == r-1, 返回两个数中小的一个. 其他情况的话枚举分界点进行状态转移. #include <bits/stdc++.h> using namespace std; #define mem1(a) memset(a, -1, sizeof(a)) co

CF1025D Recovering BST

题意:给定序列,问能否将其构成一颗BST,使得所有gcd(x, fa[x]) > 1 解:看起来是区间DP但是普通的f[l][r]表示不了根,f[l][r][root]又是n4的会超时,怎么办? 看了题解发现惊为天人...... f_l[l][r]表示[l, r]能否构成l-1的右子树,f_r[l][r]表示[l, r]能否构成r+1的左子树. 然后我们就发现这个神奇的东西变成n3了...... 1 #include <cstdio> 2 3 const int N = 710; 4 5

uva 10003 Cutting Sticks 简单区间dp

// uva 10003 Cutting Sticks 区间dp // 经典的区间dp // dp(i,j)表示切割小木棍i-j所需要的最小花费 // 则状态转移为dp(i,j) = min{dp(i,k) + dp(k,j) + a[j]-a[i]) // 其中k>i && k<j // a[j] - a[i] 为第一刀切割的代价 // a[0] = 0,a[n+1] = L; // dp数组初始化的时候dp[i][i+1]的值为 0,这表示 // 每一段都已经是切割了的,不

黑书例题 Fight Club 区间DP

题目可以在bnuoj.soj等OJ上找到. 题意: 不超过40个人站成一圈,只能和两边的人对战.给出任意两人对战的输赢,对于每一个人,输出是否可能是最后的胜者. 分析: 首先序列扩展成2倍,破环成链. dp[i][j]表示i和j能够相遇对打,那么dp[i][i+n]为真代表可以成为最后胜者. 枚举中间的k,若i和j都能和k相遇,且i和j至少一人能打赢k,那么i和j可以相遇. 复杂度o(n^3) 1 #include<cstdio> 2 #include<cstring> 3 usi

算法复习——区间dp

感觉对区间dp也不好说些什么直接照搬讲义了2333 例题: 1.引水入城(洛谷1514) 这道题先开始看不出来到底和区间dp有什么卵关系···· 首先肯定是bfs暴力判一判可以覆盖到哪些城市····无解直接输出···有解得话就要想想了···· 这道题关键是要发现··如果一个蓄水池所在城市可以覆盖到一些沙漠城市···那么这些沙漠城市肯定是一段····不然假设有一个城市是断开的而两边都被同一个蓄水池流出的水覆盖,这个城市四周的城市都肯定比它矮···(不理解举个反例吧···反正我举不出来)···然后就

合并石子 区间dp水题

合并石子 链接: nyoj 737 描述: 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出总的代价最小值. tags:最基本的区间dp,这题范围小,如果n大一些,还是要加个平行四边行优化. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring&g

Luogu P2734 游戏 A Game 区间DP

P2734 游戏 A Game 题目背景 有如下一个双人游戏:N(2 <= N <= 100)个正整数的序列放在一个游戏平台上,游戏由玩家1开始,两人轮流从序列的任意一端取一个数,取数后该数字被去掉并累加到本玩家的得分中,当数取尽时,游戏结束.以最终得分多者为胜. 题目描述 编一个执行最优策略的程序,最优策略就是使玩家在与最好的对手对弈时,能得到的在当前情况下最大的可能的总分的策略.你的程序要始终为第二位玩家执行最优策略. 输入输出格式 输入格式: 第一行: 正整数N, 表示序列中正整数的个数

HDU-4283 You Are the One (区间DP)

Problem Description The TV shows such as You Are the One has been very popular. In order to meet the need of boys who are still single, TJUT hold the show itself. The show is hold in the Small hall, so it attract a lot of boys and girls. Now there ar