UFLDL实验报告2:Sparse Autoencoder

Sparse Autoencoder稀疏自编码器实验报告

1.Sparse Autoencoder稀疏自编码器实验描述

自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如 。自编码神经网络尝试学习一个 的函数。换句话说,它尝试逼近一个恒等函数,从而使得输出 接近于输入 。当我们为自编码神经网络加入某些限制,比如给隐藏神经元加入稀疏性限制,那么自编码神经网络即使在隐藏神经元数量较多的情况下仍然可以发现输入数据中一些有趣的结构。稀疏性可以被简单地解释如下。如果当神经元的输出接近于1的时候我们认为它被激活,而输出接近于0的时候认为它被抑制,那么使得神经元大部分的时间都是被抑制的限制则被称作稀疏性限制。对施加了稀疏性限制的自编码神经网络进行训练,我们可以提取到到训练样本更高层次上的特征。比如本实验中,对图像进行稀疏自编码后,隐藏层单元可以学习到类似图像边缘的特征,我们可以认为算法学习到了比单纯像素点更高层次的特征。

  1. 实现流程

    Step 1 :产生训练样本集

    Step 2 :稀疏自编码的对象:计算成本函数和梯度

    Step 3 :梯度检查(若检查结果差距过大,返回step2)

    Step 4 :训练稀疏自编码器,更新参数

    Step 5 :对隐藏层单元进行可视化

    3.每步关键点及代码、注释

    Step 1 :产生训练样本集

    从10张图片中,每张随机采样1000个大小8x8的像素块,共得到10,000个像素块。对其进行重新排列得到矩阵patches作为实验的样本训练集,patches是64x10,000的矩阵。

    同时随机选择204张,显示如下:

    这些图像都事先进行了白化whiting处理,减少了各相邻像素点间的关联性。

    随机采样的关键实现代码如下:

    function patches = sampleIMAGES()

    % sampleIMAGES

    % Returns 10000 patches for training

    %% ---------- YOUR CODE HERE --------------------------------------

    for imageNum = 1:10

    [rowNum colNum] = size(IMAGES(:,:,imageNum));

    % select 1000 patches from every picture

    % Here , patch size is 8x8

    % randi([iMin,iMax],m,n)

    % patches : e.g. 64x10000

    % reshape(X,M,N) -> MxN matrix;Here 8x8 ->64x1

    for patchNum = 1:1000

    xPos = randi([1,rowNum - patchsize + 1]);

    yPos = randi([1,colNum - patchsize + 1]);

    patches(:,(imageNum - 1)*1000 + patchNum) = ...

    reshape(IMAGES(xPos:xPos + patchsize-1,yPos:yPos + patchsize-1,imageNum),64,1);

    end

    end

    Step 2 :稀疏自编码的对象:计算成本函数和梯度

    隐藏层单元输出(activation)的表达式如下:

    也可以表示为:

    矢量化表达式如下

    这个步骤称为前向传播forward propagation,更一般的,对神经网络中的l层和l+1层,有:

    成本函数由三项构成:

    其中

    算法通过迭代,尽量使

    用反向传播(Backward propagation)算法计算预测误差,需要用到成本函数的梯度,其表达式如下:

    算法调用minFunc()更新参数W,b,以便得到更好的预测模型。

    实现矢量化的关键是了解各变量的维度大小,各变量维数大小如下:

    关键实现代码如下:

    function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...

    lambda, sparsityParam, beta, data)

    %% ---------- YOUR CODE HERE --------------------------------------

    [n,m] = size(data); % m is the number of traning set,n is the num of features

    % forward algorithm

    % B = repmat(A,M,N) -> replicate and tile an array->MxN

    % b1 -> b1 row vector 1xm

    z2 = W1*data+repmat(b1,1,m);

    a2 = sigmoid(z2);

    z3 = W2*a2+repmat(b2,1,m);

    a3 = sigmoid(z3);

    % compute first part of cost

    Jcost = 0.5/m*sum(sum((a3-data).^2));

    % compute the weight decay

    Jweight = 1/2* lambda*sum(sum(W1.^2)) + 1/2*lambda*sum(sum(W2.^2));

    % compute the sparse penalty

    % sparsityParam(rho): The desired average activation for the hidden units

    % rho(rho^) : the actual average activation of hidden unit

    rho = 1/m*sum(a2,2);

    Jsparse = beta * sum(sparsityParam.*log(sparsityParam./rho)+...

    (1-sparsityParam).*log((1-sparsityParam)./(1-rho)));

    % the complete cost function

    cost = Jcost + Jweight + Jsparse;

    % backward propagation

    % compute gradient

    d3 = -(data-a3).*sigmoidGradient(z3);

    % since we introduce the sparsity term--Jsparse in cost function

    extra_term = beta*(-sparsityParam./rho+(1-sparsityParam)./(1-rho));

    % add the extra term

    d2 = (W2‘*d3 + repmat(extra_term,1,m)).*sigmoidGradient(z2);

    % compute W1grad

    W1grad = 1/m*d2*data‘ + lambda*W1;

    % compute W2grad

    W2grad = 1/m*d3*a2‘+lambda*W2;

    % compute b1grad

    b1grad = 1/m*sum(d2,2);

    % compute b2grad

    b2grad = 1/m*sum(d3,2);

    Step 3 :梯度检查(若检查结果差距过大,返回step2)

    checkNumericalGradient.m定义了一个简单的二次函数h(x) = x21+ 3x1x2,检查在x = (4, 10)T点处的梯度是否计算正确。帮助我们确认梯度的代码是否正确实现。

    梯度的数值近似表达式如下所示:

    computeNumericalGradient.m可以帮我们详细检查计算的梯度是否正确。实际得到的梯度与数值计算得到的梯度尽可能接近,在本实验中要小于10 e-9。如果这个差值过大,则应该重新检查算法的实现代码。

    梯度的数值近似关键实现代码如下:

    function numgrad = computeNumericalGradient(J, theta)

    %% ---------- YOUR CODE HERE --------------------------------------

    epsilon = 1e-4;

    n = size(theta,1);

    E = eye(n);

    for i = 1:n

    delta = E(:,i)*epsilon;

    numgrad(i) = (J(theta+delta)-J(theta-delta))/(epsilon*2.0);

    end

    Step 4 :训练稀疏自编码器,更新参数

    在本实验中优化函数常用minFunc,是有Mark Schmidt 编写的一个Matlab优化工具箱,采用Limited-memory BFGS等算法实现最优化。

    优化代码如下所示:

    % Randomly initialize the parameters

    theta = initializeParameters(hiddenSize, visibleSize);

    % Use minFunc to minimize the function

    % addpath minFunc/

    options.Method = ‘lbfgs‘; % Here, we use L-BFGS to optimize our cost

    % function. Generally, for minFunc to work, you

    % need a function pointer with two outputs: the

    % function value and the gradient. In our problem,

    % sparseAutoencoderCost.m satisfies this.

    options.maxIter = 400; % Maximum number of iterations of L-BFGS to run

    options.display = ‘on‘;

    [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...

    visibleSize, hiddenSize, ...

    lambda, sparsityParam, ...

    beta, patches), ...

    theta, options);

    Step 5 :对隐藏层单元进行可视化

    最后调用display_network.m,将隐藏层单元可视化,并存到weights.jpg文件中。

    W1 = reshape(opttheta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);

    display_network(W1‘, 12);

    print -djpeg weights.jpg % save the visualization to a file

    实验结果显示的那些权值图像代表什么呢?如果输入的特征满足二泛数小于1的约束,即满足:

    那么可以证明只有当输入的x中的每一维满足:时,其对隐含层的active才最大,也就是说最容易是隐含层的节点输出为1,可以看出,输入值和权值应该是正相关的。

    4.实验结果及运行环境

    实验结果

    梯度检查所得差值为7.0949e-11,远小于1.0e-9,满足条件。

    得到的隐藏层单元可视化图像如下所示;

    我们可以看到隐藏层单元学习到类似图像边缘的高阶特征。

    梯度检查耗时:1261.874秒,约21分钟

    关闭梯度检查,训练样本耗时:85.030秒

    运行环境

    处理器: AMD A6-3420M APU with Radeon(tm) HD Graphics 1.50 GHz

    RAM:4.00GB(2.24GB可用)

    OS:Windows 7,32 bit

    Matlab:R2012b(8.0.0.783)

  2. 附录:实际运行结果

    ...skip some results

    >> train

    Iteration FunEvals Step Length Function Val Opt Cond

    1 4 7.63802e-02 8.26408e+00 2.99753e+02

    2 5 1.00000e+00 4.00717e+00 1.59412e+02

    3 6 1.00000e+00 1.63622e+00 6.87329e+01

    4 7 1.00000e+00 8.46885e-01 3.03970e+01

    5 8 1.00000e+00 5.82961e-01 1.13785e+01

    6 9 1.00000e+00 5.27282e-01 3.28861e+00

    7 10 1.00000e+00 5.21369e-01 5.66333e-01

    8 11 1.00000e+00 5.21182e-01 6.87621e-02

    9 12 1.00000e+00 5.21174e-01 5.95455e-02

    10 13 1.00000e+00 5.21153e-01 1.00395e-01

    11 14 1.00000e+00 5.21136e-01 8.79291e-02

    12 15 1.00000e+00 5.21108e-01 8.22846e-02

    13 16 1.00000e+00 5.21027e-01 1.21261e-01

    ....

    395 410 1.00000e+00 4.46807e-01 4.30329e-02

    396 411 1.00000e+00 4.46794e-01 5.90697e-02

    397 412 1.00000e+00 4.46780e-01 6.49777e-02

    398 413 1.00000e+00 4.46768e-01 4.46670e-02

    399 414 1.00000e+00 4.46761e-01 2.51915e-02

    400 415 1.00000e+00 4.46758e-01 2.03033e-02

    Exceeded Maximum Number of Iterations

    >>

时间: 2024-08-10 01:40:32

UFLDL实验报告2:Sparse Autoencoder的相关文章

UFLDL实验报告3:Self-taught

Self-taught 自我学习器实验报告 1.Self-taught 自我学习实验描述 自我学习是无监督特征学习算法,自我学习意味着算法能够从未标注数据中学习,从而使机器学习算法能够获得更大数量的数据,因而更有可能取得更好的性能.在本实验中,我们将按照自我学习的步骤,使用稀疏自编码器和softmax分类器去构造一个手写数字分类器. 实现流程 Step 1 :产生训输入和测试样本集 Step 2 :训练稀疏自编码器 Step 3 :提取特征 Step 4 :训练和测试softMax分类器 Ste

UFLDL实验报告1: Softmax Regression

PS:这些是今年4月份,跟斯坦福UFLDL教程时的实验报告,当时就应该好好整理的…留到现在好凌乱了 Softmax Regression实验报告 1.Softmax Regression实验描述 Softmax回归模型是逻辑回归模型的推广,它可以把数据分类到两个以上的类别.在本实验中,我们的目标是采用Softmax回归模型对MNIST手写数字数据库进行分类,识别每个手写数字,把它们归类于0到9之间的10个类别.实验中需要计算成本函数J,参数Theta,成本函数的梯度,及预测假设h. Figure

【转帖】Andrew ng 【Sparse Autoencoder 】@UFLDL Tutorial

Neural Networks From Ufldl Jump to: navigation, search Consider a supervised learning problem where we have access to labeled training examples (x(i),y(i)).  Neural networks give a way of defining a complex, non-linear form of hypotheses hW,b(x), wit

七、Sparse Autoencoder介绍

目前为止,我们已经讨论了神经网络在有监督学习中的应用.在有监督学习中,训练样本是有类别标签的.现在假设我们只有一个没有带类别标签的训练样本集合  ,其中  .自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如  .下图是一个自编码神经网络的示例. 自编码神经网络尝试学习一个  的函数.换句话说,它尝试逼近一个恒等函数,从而使得输出  接近于输入  .恒等函数虽然看上去不太有学习的意义,但是当我们为自编码神经网络加入某些限制,比如限定隐藏神经元的数量,我们就可以从

Exercise:Sparse Autoencoder

斯坦福deep learning教程中的自稀疏编码器的练习,主要是参考了   http://www.cnblogs.com/tornadomeet/archive/2013/03/20/2970724.html,没有参考肯定编不出来...Σ( ° △ °|||)︴  也当自己理解了一下 这里的自稀疏编码器,练习上规定是64个输入节点,25个隐藏层节点(我实验中只有20个),输出层也是64个节点,一共有10000个训练样本 具体步骤: 首先在页面上下载sparseae_exercise.zip S

广外第二周的实验报告来这里分享一下

虽然有很多还不知道怎么改,可能也有很多测试不到的地方,但是通过这个星期我好歹了解了好多东西啊 实验报告 通过本次学习,能了解到VC6.0.是用于将已生成的C++语言源程序代码转换为计算机能读懂的目标代码,计算机用的均是二进制代码.编辑完成后它首先生成扩展名为obj的文件(程序编译后的二进制文件),若想进行之后的链接.运行过程,必须不断修改源程序文件至完全正确. 在文件→新建→源代码这里可以新建源代码:新建→打开项目或文件中可以打开以前写过的源代码或者程序:运行→编译中即把所打源文件转换为二进制代

2062326 齐力锋 实验四《Java面向对象程序设计Android开发》实验报告

北京电子科技学院(BESTI) 实 验 报 告 课程: 程序设计与数据结构  班级: 1623  姓名: 齐力锋 学号: 20162326 成绩: 指导教师: 娄嘉鹏/王志强 实验日期: 2017年5月26日 实验密级:非密级 预习程度: 优良 实验时间: 2 Hours 仪器组次: 必修/选修: 必修 实验序号: 04 实验名称:Java面向对象程序设计Android开发 实验内容 1.Android Stuidio的安装测试: 参考<Java和Android开发学习指南(第二版)(EPUBI

词法分析实验报告

词法分析实验报告 一.        实验目的 编制一个词法分析器,通过该词法分析程序的设计实例,进一步了解词法分析程序构造的一些细节. 二.        实验内容和要求 实验内容: 对字符串表示的源程序,从左到右进行扫描和分解.根据词法规则,识别出一个一个具有独立意义的单词符号,以供语法分析之用,若发现词法错误,则返回出错信息. 实验要求: 输入:源程序字符串 输出:二元组(种别,单词本身) 待分析语言的词法规则 三. 实验方法.步骤及结果测试 源程序名:压缩包文件(rar或zip)中源程序

DAY01 WINDOWS 实验报告

DAY 01   Windows 实验一 实验名称:虚拟机的安装以及win7系统的安装 实验描述:学习安装虚拟机,以及安装不同的系统,可以满足用户不同时期的不同的需求 实验步骤: 步骤1:点击开始-选择vmware文件夹-点击Vmware Workstation                             步骤2:点击文件-新建虚拟机-下一步-选择客户机操作系统和版本-选择虚拟机安装位置-设置虚拟机的处理器.内存等信息-完成虚拟机裸机的安装 步骤3:点击编辑虚拟器-双击CD/DVD(