BNUOJ 5997 Fibonacci again and again

Fibonacci again and again

Time Limit: 1000ms

Memory Limit: 32768KB

This problem will be judged on HDU. Original ID: 1848
64-bit integer IO format: %I64d      Java class name: Main

任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、  这是一个二人游戏;
2、  一共有3堆石子,数量分别是m, n, p个;
3、  两人轮流走;
4、  每走一步可以选择任意一堆石子,然后取走f个;
5、  f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、  最先取光所有石子的人为胜者;

假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。

Input

输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。

Output

如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。

Sample Input

1 1 1
1 4 1
0 0 0

Sample Output

Fibo
Nacci

Source

ACM Short Term Exam_2007/12/13

解题:SG函数

对于一个给定的有向无环图,定义关于图的每个顶点的 Sprague-Grundy 函数g如下:g(x)=mex{ g(y) | y是x的后继 },这里的g(x)即sg[x]

例如:取石子问题,有1堆n个的石子,每次只能取{1,3,4}个石子,先取完石子者胜利,那么各个数的SG值为多少?

sg[0]=0,f[]={1,3,4},

x=1时,可以取走1-f{1}个石子,剩余{0}个,mex{sg[0]}={0},故sg[1]=1;

x=2时,可以取走2-f{1}个石子,剩余{1}个,mex{sg[1]}={1},故sg[2]=0;

x=3时,可以取走3-f{1,3}个石子,剩余{2,0}个,mex{sg[2],sg[0]}={0,0},故sg[3]=1;

x=4时,可以取走4-f{1,3,4}个石子,剩余{3,1,0}个,mex{sg[3],sg[1],sg[0]}={1,1,0},故sg[4]=2;

x=5时,可以取走5-f{1,3,4}个石子,剩余{4,2,1}个,mex{sg[4],sg[2],sg[1]}={2,0,1},故sg[5]=3;

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <climits>
 7 #include <vector>
 8 #include <queue>
 9 #include <cstdlib>
10 #include <string>
11 #include <set>
12 #include <stack>
13 #define LL long long
14 #define pii pair<int,int>
15 #define INF 0x3f3f3f3f
16 using namespace std;
17 const int maxn = 1010;
18 int f[maxn] = {1,2},sg[maxn];
19 bool vis[maxn];
20 void init(){
21     int i,j;
22     for(i = 2; f[i-1] <= 1000 && i <= 1000; i++)
23         f[i] = f[i-1]+f[i-2];
24     memset(sg,0,sizeof(sg));
25     for(i = 0; i <= 1000; i++){
26         memset(vis,false,sizeof(vis));
27         for(j = 0; f[j] <= i; j++)
28             vis[sg[i-f[j]]] = true;
29         for(j = 0; j <= 1000; j++)
30             if(!vis[j]){
31                 sg[i] = j;
32                 break;
33             }
34     }
35 }
36 int main() {
37     init();
38     int a,b,c;
39     while(scanf("%d %d %d",&a,&b,&c),a||b||c){
40         if(sg[a]^sg[b]^sg[c]) puts("Fibo");
41         else puts("Nacci");
42     }
43     return 0;
44 }

BNUOJ 5997 Fibonacci again and again,布布扣,bubuko.com

时间: 2025-01-13 22:00:23

BNUOJ 5997 Fibonacci again and again的相关文章

NYOJ 480 Fibonacci Again!

Fibonacci Again! 时间限制:1000 ms  |  内存限制:65535 KB 难度:2 描写叙述 求第n个斐波那契数是否是一个素数,n为整数 f[n]=f[n-1]+f[n-2] (2<n<30) f[1]=3,f[2]=7 输入 输入整数m,0<m<30,输入-1表示结束输入 输出 假设f[m]是素数 则输出Yes,否则输出No, 每行输出占一行. 例子输入 2 3 例子输出 Yes No #include<stdio.h> int f[35]={0

HDU1848 Fibonacci again and again

Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 8198    Accepted Submission(s): 3412 Problem Description 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:F(1)=1;F(2)=2;

hdu 5167 Fibonacci(DFS)

hdu 5167 Fibonacci 问题描述 斐波那契数列的递归定义如下: Fi=???01Fi?1+Fi?2i = 0i = 1i > 1 现在我们需要判断一个数是否能表示为斐波那契数列中的数的乘积. 输入描述 有多组数据,第一行为数据组数T(T≤100,000). 对于每组数据有一个整数n,表示要判断的数字. 0≤n≤1,000,000,000 输出描述 对于每组数据,如果可以输出"Yes",否则输出"No". 输入样例 3 4 17 233 输出样例

HDU 4099 Revenge of Fibonacci

Revenge of Fibonacci Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 204800/204800 K (Java/Others) Total Submission(s): 2027    Accepted Submission(s): 475 Problem Description The well-known Fibonacci sequence is defined as following: Here w

Fibonacci斐波拉契数列----------动态规划DP

n==10 20 30 40 50 46 体验一下,感受一下,运行时间 #include <stdio.h>int fib(int n){ if (n<=1)     return 1; else            return fib(n-1)+fib(n-2); }int main( ){ int n; scanf("%d",&n); printf("%d\n" ,fib(n) );} 先 n==10 20 30 40 50 46

HUDJ 1021 Fibonacci Again

Fibonacci Again Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 36028    Accepted Submission(s): 17385 Problem Description There are another kind of Fibonacci numbers: F(0) = 7, F(1) = 11, F(n)

Fibonacci数

Fibonacci数 描述 无穷数列1,1,2,3,5,8,13,21,34,55...称为Fibonacci数列,它可以递归地定义为F(n)=1 ...........(n=1或n=2)F(n)=F(n-1)+F(n-2).....(n>2)现要你来求第n个斐波纳奇数.(第1个.第二个都为1) 输入 第一行是一个整数m(m<5)表示共有m组测试数据每次测试数据只有一行,且只有一个整形数n(n<20) 输出 对每组输入n,输出第n个Fibonacci数 实现: package July;

Python中的函数递归思想,以及对比迭代和递归解决Fibonacci数列

什么是递归?简单的说就是:函数自身调用自身. "普通程序员用迭代,天才程序员用递归" 虽然递归 在运行时会不断出栈压栈,调用底层的寄存器,造成空间上的占用以及时间上的缓慢, 但在一些算法上面仍然是递归很实用 但需要注意的是: #递归是自己调用自己 很消耗时间,还会有消耗空间的危险,所以递归递归一定要知道"归去来兮" #所谓"归去来兮"就是指递归的两个原则: #1.调用了函数自身 #2.设置了自身正确的返回值 (必须有一个正确的返回停止条件,不能无

HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出k,b,n,M,问( f(g(0)) + f(g(1)) + ... + f(g(n)) ) % M的值. 分析: 把斐波那契的矩阵带进去,会发现这个是个等比序列. 推倒: S(g(i)) = F(b) + F(b+k) + F(b+2k) + .... + F(b+nk) // 设 A = {1,1,