基于 FPGA 的图像边缘检测

本文主要内容是实现图像的边缘检测功能


目录

  1. mif文件的制作
  2. 调用 ip 核生成rom以及在 questasim 仿真注意问题
  3. 灰度处理
  4. 均值滤波
  5. sobel边缘检测
  6. 图片的显示
  7. 结果展示

mif文件的制作

受资源限制,将图片像素定为 160 * 120,将图片数据制成 mif 文件,对 rom ip 核进行初始化。mif文件的制作方法网上有好多办法,因此就不再叙述了,重点说mif文件的格式。

1、mif文件的格式为:

 1 WIDTH=16 ;    //数据位宽
 2 DEPTH=19200 ;   // rom 深度即图片像素点的个数
 3 ADDRESS_RADIX=UNS ;   //地址数据格式
 4 DATA_RADIX=BIN ;   //数据格式
 5 CONTENT
 6 BEGIN
 7 0:1010110011010000 ;     // 地址 :数据 ;注意格式要和上面定义的保持统一
 8 1:1010110011010000 ;
 9 2:1010010010110000 ;
10 ......
11 19198:1110011011111001 ;
12 19199:1110011011011000 ;
13 END;

调用ip 核生成 rom 以及在 questasim 仿真注意问题

这部分内容已经在上篇博文中详细描述过,详情请见http://www.cnblogs.com/aslmer/p/5780107.html


灰度处理

任何颜色都由红、绿、蓝三原色组成,假如原来某点的颜色为( R,G,B )那么,我们可以通过下面几种方法,将其转换为灰度:

  • 浮点算法:Gray=0.299R+0.587G+0.114B
  • 平均值法:Gray=(R+G+B)/3;
  • 仅取单色(如绿色):Gray=G;

将计算出来的Gray值同时赋值给 RGB 三个通道即RGB为(Gray,Gray,Gray),此时显示的就是灰度图。通过观察调色板就能看明了。 通过观察可知,当RGB三个通道的值相同时即为灰色,Gray的值越大,颜色越接近白色,反之越接近黑色(这是我自己的理解,不严谨错误之处请大神指正)。

这是在线调色板网址,可以进去自己研究一下。http://tool.chinaz.com/tools/selectcolor.aspx

--------------------------------------------------------------------------------------------------------------------

此次我采用是浮点算法来实现灰度图的,我的图片数据是RGB565 格式 ,

难点: 如何进行浮点运算。

思路:先将数据放大,然后再缩小。

例如:

Gray=0.299R+0.587G+0.114B转化为 Gray=(77R+150G+29B)>>8 即可,这里有一个技巧,若 a 为 16 位即 a [15:0],那么 a>>8 与 a [15:8]是一样的。

核心代码如下:

always  @(posedge clk or negedge rst_n)begin
    if(rst_n==1‘b0)begin
       red_r1   <= 0 ;
       green_r1 <= 0 ;
       blue_r1  <= 0 ;
    end
    else begin
       red_r1   <= red   * 77 ;        //放大后的值
       green_r1 <= green * 150;
       blue_r1  <= blue  * 29 ;
    end
end

always  @(posedge clk or negedge rst_n)begin
    if(rst_n==1‘b0)begin
        Gray <= 0;    // 三个数之和
    end
    else begin
        Gray <= red_r1 + green_r1 + blue_r1;
    end
end

always  @(posedge clk or negedge rst_n)begin
    if(rst_n==1‘b0)begin
       post_data_in <= 0;  //输出的灰度数据
    end
    else begin
       post_data_in <= { Gray[13:9], Gray[13:8], Gray[13:9] };//将Gray值赋值给RGB三个通道
    end
end
 

均值滤波

均值滤波的原理

http://blog.csdn.net/hhygcy/article/details/4325304 (此处引用 hhygcy 的文章)

难点:如何生成 3*3 的像素阵列。

我们可以利用 ip 核生成移位寄存器 ,方法与 ip 核 生成 rom 一样,详情见目录 2 因此不再赘述 。

仿真波形如下 row_1 , row_2 , row_3 是指图像的第一、二、三行的数据,Per_href 是行有效信号(受VGA时序的启发,从 rom 中读取数据时设计了行有效和场有效的控制信号,事半功倍,有了利于仿真查错和数据的控制)。从 3 开始就出现了3*3 的像素阵列,这时候就可以求取周围 8 个像素点的平均值,进行均值滤波。

核心代码如下:

reg [5:0]p_11,p_12,p_13;  // 3 * 3 卷积核中的像素点
reg [5:0]p_21,p_22,p_23;
reg [5:0]p_31,p_32,p_33;
reg [8:0]mean_value_add1,mean_value_add2,mean_value_add3;//每一行之和

always  @(posedge clk or negedge rst_n)begin
    if(rst_n==1‘b0)begin
        {p_11,p_12,p_13} <= {5‘b0,5‘b0,5‘b0}   ;
        {p_21,p_22,p_23} <= {15‘b0,15‘b0,15‘b0};
        {p_31,p_32,p_33} <= {15‘b0,15‘b0,15‘b0};
    end
    else  begin
     if(per_href_ff0==1&&flag_do==1)begin
        {p_11,p_12,p_13}<={p_12,p_13,row_1};
        {p_21,p_22,p_23}<={p_22,p_23,row_2};
        {p_31,p_32,p_33}<={p_32,p_33,row_3};
     end
     else begin
         {p_11,p_12,p_13}<={5‘b0,5‘b0,5‘b0};
         {p_21,p_22,p_23}<={5‘b0,5‘b0,5‘b0}
         {p_31,p_32,p_33}<={5‘b0,5‘b0,5‘b0}
     end
   end
end

always  @(posedge clk or negedge rst_n)begin
    if(rst_n==1‘b0)begin
        mean_value_add1<=0;
        mean_value_add2<=0;
        mean_value_add3<=0;
    end
    else if(per_href_ff1)begin
        mean_value_add1<=p_11+p_12+p_13;
        mean_value_add2<=p_21+   0   +p_23;
        mean_value_add3<=p_31+p_32+p_33;
    end
end

wire [8:0]mean_value;//8位数之和
wire [5:0]fin_y_data; //平均数,除以8,相当于左移三位。

assign mean_value=mean_value_add1+mean_value_add2+mean_value_add3;
assign fin_y_data=mean_value[8:3];

sobel 边缘检测

边缘检测的原理

该算子包含两组 3x3 的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。A代表原始图像的 3*3 像素阵列,Gx及Gy分别代表经横向及纵向边缘检测的图像,其公式如下:

图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。

如果梯度G大于某一阀值则认为该点(x,y)为边缘点。

-------------------------------------------------------------------------------------------------------------------

用的是 边缘检测算法。

难点:(1)掌握了 3*3 像素阵列,Gx 与 Gy 就很好计算了 (注意问题:为了避免计算过程中出现负值,所以将正负值分开单独计算,具体见代码)

(2)G的计算需要开平方,如何进行开平方运算

Quartus 提供了开平方 ip 核,因此我们直接调用就好了 。

代码:

reg [8:0] p_x_data ,p_y_data ;  // x 和 y 的正值之和
reg [8:0] n_x_data ,n_y_data ; // x 和 y 的负值之和
reg [8:0] gx_data  ,gy_data  ; //最终结果

always  @(posedge clk or negedge rst_n)begin
    if(rst_n==1‘b0)begin
       p_x_data <=0;
       n_x_data <=0;
       gx_data   <=0;
    end
    else if(per_href_ff1==1) begin
        p_x_data <= p_13 + (p_23<<1) + p_33 ;
        n_x_data <= p_11 + (p_12<<1 )+ p_13 ;
        gx_data   <= (p_x_data >=n_x_data)? p_x_data - n_x_data : n_x_data - p_x_data ;
    end
    else begin
         p_x_data<=0;
         n_x_data<=0;
         gx_data <=0;
    end
end

always  @(posedge clk or negedge rst_n)begin
    if(rst_n==1‘b0)begin
       p_y_data <=0;
       n_y_data <=0;
       gy_data   <=0;
    end
    else if(per_href_ff1==1) begin
        p_y_data <= p_11 + (p_12<<1) + p_13 ;
        n_y_data <= p_31 + (p_32<<1) + p_33 ;
        gy_data   <= (p_y_data >=n_y_data)? p_y_data - n_y_data : n_y_data - p_y_data ;
    end
    else begin
        p_y_data <=0;
        n_y_data <=0;
        gy_data   <=0;
   end
end

//求平方和,调用ip核开平方
reg [16:0] gxy; // Gx 与 Gy 的平方和
always  @(posedge clk or negedge rst_n)begin
    if(rst_n==1‘b0)begin
        gxy<=0;
    end
    else begin
        gxy<= gy_data* gy_data + gx_data* gx_data ;
    end
end

wire [8:0] squart_out ;
altsquart  u1_altsquart (     //例化开平方的ip核
    .radical (gxy),
    .q       (squart_out),  //输出的结果
    .remainder()
                       );

//与阈值进行比较
reg [15:0] post_y_data_r;
always  @(posedge clk or negedge rst_n)begin
    if(rst_n==1‘b0)begin
        post_y_data_r<=16‘h00;
    end
    else if(squart_out>=threshold)
         post_y_data_r<=16‘h00  ;
    else
         post_y_data_r<=16‘hffff  ;

end

图片的显示

本来是想用 VGA 来显示图片的,由于条件的限制没能实现,最终只能将处理完的数据输出保存在 .txt 文件中,然后借助好友写的网页进行显示。

难点:(1) 如何将数据流输出保存到 .txt 文件中。

(2) 网页的使用及注意事项

在testbench里加入下面所示代码即可将图片数据保存到 .txt 文本

代码如下:

     integer w_file;
     initial
     w_file = $fopen("data_out_3.txt");   //保存数据的文件名

     always @(posedge clk or negedge rst_n)
     begin
      if(flag_write==1&&post_href==1)//根据自己的需求定义
        $fdisplay(w_file,"%b",post_y_data);
      end      

------------------------------------------------------------------------------------------------

网页的界面如下,将参数设置好以后就可以显示图片。

下载链接 http://files.cnblogs.com/files/aslmer/aggregrate.zip

注意:由于此网站是量身定做的,所以只能显示数据格式为RGB565的16位二进制的数才能正确显示,注意不能有分号,正确格式示例如下,必须严格遵守


结果展示


1 原图


2 灰度图


3 均值滤波


4 边缘检测 阈值为5


5  阈值为 10


6  阈值为 16

小结:均值滤波处理后的图片有明显的黑边,产生这一现象的原因就是生成 3*3 像素矩阵和取像素值时数据有损失造成的,但是这也是可以优化的,后续我会继续努力不断完善。本次只是简单对一幅图像进行边缘检测,我的后续目标是实现图片的实时处理,这又需要学习很多东西了,SDRAM、摄像头驱动等等等,越学习越发现自己知道的实在是太少了,永远在路上,学无止境。希望我的分享能够帮助一些和我一样热爱 FPGA 图像处理的朋友。

每天进步一点点,开心就好

aslmer

转载请注明出处 http://www.cnblogs.com/aslmer/p/5779079.html

时间: 2024-11-18 05:18:15

基于 FPGA 的图像边缘检测的相关文章

基于FPGA的Sobel边缘检测的实现

前面我们实现了使用PC端上位机串口发送图像数据到VGA显示,通过MATLAB处理的图像数据直接是灰度图像,后面我们在此基础上修改,从而实现,基于FPGA的动态图片的Sobel边缘检测.中值滤波.Canny算子边缘检测.腐蚀和膨胀等.那么这篇文章我们将来实现基于FPGA的Sobel边缘检测. 图像边缘:简言之,边缘就是图像灰度值突变的地方,亦即图像在该部分的像素值变化速度非常之快,这就好比在坐标轴上一条曲线有刚开始的平滑突然来个大转弯,在变化出的导数非常大. Sobel算子主要用作边缘检测,在技术

基于FPGA的图像开发平台 其他摄像头附件说明(OV5642 OV9655)

基于FPGA的图像开发平台 其他摄像头附件说明 FPGA_VIP_V101 编者 奇迹再现 个人博客 http://www.cnblogs.com/ccjt/ 联系邮箱 [email protected] 淘宝网址 http://ccjt.taobao.com 修订记录 见下页 版权归奇迹再现所有,抄袭请注明出处, 参考文献:CrazyBingo原创相关文档.请尊重原创. 前言: 本系统方案理论适合DVP绝大部分摄像头测试,调试及开发,针对其他摄像头,因为寄存器参数不同,需要进行相应移植. 目前

基于FPGA的腐蚀膨胀算法实现

本篇文章我要写的是基于的腐蚀膨胀算法实现,腐蚀膨胀是形态学图像处理的基础,,腐蚀在二值图像的基础上做"收缩"或"细化"操作,膨胀在二值图像的基础上做"加长"或"变粗"的操作.那么什么是二值图像呢?把一幅图片看做成一个二维的数组,那么二值图像是一个只有0和1的逻辑数组,我们前面Sobel边缘检测后的图像输出边缘效果,设置个阈值,大于阈值输出为1,小于阈值输出为0,最后输出就是一幅二维图像了. 上一篇我是直接用MATLAB处理后的

基于FPGA的线阵CCD图像测量系统研究——笔记

---恢复内容开始--- 本文是对基于FPGA的线阵CCD图像测量系统研究的阅读笔记 读了前面的摘要依然没有看懂作者要做什么.接着往下读.... 终于看到了一个字眼“基于机器视觉的图像测量技术”,看来我可以在这个方面找找文献了. 不同于大多数光电器件以电流或者电压为传感信号,CCD是以电荷为信号把一副空余分布的图像变为一列按时间域离散分布的电荷信号. 非接触式的快速精确测量 ---恢复内容结束---

基于FPGA的RGB图像转灰度图像算法实现

一.前言 最近学习牟新刚编著<基于FPGA的数字图像处理原理及应用>的第六章直方图操作,由于需要将捕获的图像转换为灰度图像,因此在之前代码的基础上加入了RGB图像转灰度图像的算法实现. 2020-02-29 10:38:40 二.RGB图像转灰度图像算法原理 将彩色图像转换为灰度图像的方法有两种,一个是令RGB三个分量的数值相等.输出后便可以得到灰度图像,另一种是转换为YCbCr格式,将Y分量提取出来,YCbCr格式中的Y分量表示的是图 像的亮度和浓度,所以只输出Y分量,得到图像就是灰度图像.

基于matlab的经典图像边缘检测算法

图像边缘检测算法 (1)Robert算子边缘检测 (2)Sobel算子边缘检测 (3)Prewitt算子边缘检测 (4)LOG算子边缘检测 (5)Canny边缘检测 Matlab的实现. 其实还只是掉包侠,一点算法没有写 争取有空用openCV写一遍 I=imread('1.jpg'); I0=rgb2gray(I); subplot(231); imshow(I); BW1=edge(I0,'Roberts',0.16); subplot(232); imshow(BW1); title('R

基于FPGA的均值滤波算法实现

我们为了实现动态图像的滤波算法,用串口发送图像数据到FPGA开发板,经FPGA进行图像处理算法后,动态显示到VGA显示屏上,前面我们把硬件平台已经搭建完成了,后面我们将利用这个硬件基础平台上来实现基于FPGA的一系列图像处理基础算法. 椒盐噪声(salt & pepper noise)是数字图像的一个常见噪声,所谓椒盐,椒就是黑,盐就是白,椒盐噪声就是在图像上随机出现黑色白色的像素.椒盐噪声是一种因为信号脉冲强度引起的噪声,产生清楚该噪声的算法也比较简单. 均值滤波的方法将数据存储成3x3的矩阵

基于FPGA的VGA显示静态图片

终于熬到暑假了,记过三四周的突击带考试,终于为我的大二画上了一个完整的句号,接下来终于可以静心去做自己想做的事情了,前一阵子报了一个线上培训班,学学Sobel边缘检测,之前一直在学习图像处理,但是因为一直看人家的代码,到后来难免有点空虚.所以说自己狠下心来,报了一个线上培训班,重新学习一下,自己设计Sobel边缘检测,势要摆脱抄别人代码的魔咒.所以这次图像显示部分和在彩色条纹中显示一副图片的代码,全部是我自己设计的,虽然不是什么大工程,但是还是满满的成就感,这次用的时间比较久,因为使用的是新板子

基于FPGA的均值滤波算法的实现

前面实现了基于FPGA的彩色图像转灰度处理,减小了图像的体积,但是其中还是存在许多噪声,会影响图像的边缘检测,所以这一篇就要消除这些噪声,基于灰度图像进行图像的滤波处理,为图像的边缘检测做好夯实基础. 椒盐噪声(salt & pepper noise)是数字图像的一个常见噪声,所谓椒盐,椒就是黑,盐就是白,椒盐噪声就是在图像上随机出现黑色白色的像素.椒盐噪声是一种因为信号脉冲强度引起的噪声,产生该噪声的算法也比较简单. 均值滤波的方法将数据存储成3x3的矩阵,然后求这个矩阵.在图像上对目标像素给