时间复杂度和空间复杂度详解

算法的时间复杂度和空间复杂度合称为算法的复杂度。

1.时间复杂度

(1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

(2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

时间频度不同,但时间复杂度可能相同。如:T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。

按数量级递增排列,常见的时间复杂度有:常数阶O(1),对数阶O(log2n),线性阶O(n), 线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),..., k次方阶O(nk),指数阶O(2n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

(3)最坏时间复杂度和平均时间复杂度  最坏情况下的时间复杂度称最坏时间复杂度。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,这就保证了算法的运行时间不会比任何更长。

在最坏情况下的时间复杂度为T(n)=0(n),它表示对于任何输入实例,该算法的运行时间不可能大于0(n)。 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,算法的期望运行时间。

指数阶0(2n),显然,时间复杂度为指数阶0(2n)的算法效率极低,当n值稍大时就无法应用。

(4)求时间复杂度

【1】如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

x=91; y=100;
while(y>0) if(x>100) {x=x-10;y--;} else x++;
解答: T(n)=O(1),
这个程序看起来有点吓人,总共循环运行了1000次,但是我们看到n没有?
没。这段程序的运行是和n无关的,
就算它再循环一万年,我们也不管他,只是一个常数阶的函数

【2】当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

x=1;

for(i=1;i<=n;i++)

for(j=1;j<=i;j++)

for(k=1;k<=j;k++)

x++;   

该程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数:  则该程序段的时间复杂度为T(n)=O(n3/6+低次项)=O(n3)

【3】算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。

在数值A[0..n-1]中查找给定值K的算法大致如下:

i=n-1;

while(i>=0&&(A[i]!=k))

i--;

return i;

此算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关: ①若A中没有与K相等的元素,则语句(3)的频度f(n)=n; ②若A的最后一个元素等于K,则语句(3)的频度f(n)是常数0。

(5)时间复杂度评价性能

有两个算法A1和A2求解同一问题,时间复杂度分别是T1(n)=100n2,T2(n)=5n3。(1)当输入量n<20时,有T1(n)>T2(n),后者花费的时间较少。(2)随着问题规模n的增大,两个算法的时间开销之比5n3/100n2=n/20亦随着增大。即当问题规模较大时,算法A1比算法A2要有效地多。它们的渐近时间复杂度O(n2)和O(n3)从宏观上评价了这两个算法在时间方面的质量。在算法分析时,往往对算法的时间复杂度和渐近时间复杂度不予区分,而经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。

2.空间复杂度

一个程序的空间复杂度是指运行完一个程序所需内存的大小。利用程序的空间复杂度,可以对程序的运行所需要的内存多少有个预先估计。一个程序执行时除了需要存储空间和存储本身所使用的指令、常数、变量和输入数据外,还需要一些对数据进行操作的工作单元和存储一些为现实计算所需信息的辅助空间。程序执行时所需存储空间包括以下两部分。  

(1)固定部分。这部分空间的大小与输入/输出的数据的个数多少、数值无关。主要包括指令空间(即代码空间)、数据空间(常量、简单变量)等所占的空间。这部分属于静态空间。

(2)可变空间,这部分空间的主要包括动态分配的空间,以及递归栈所需的空间等。这部分的空间大小与算法有关。

一个算法所需的存储空间用f(n)表示。S(n)=O(f(n))  其中n为问题的规模,S(n)表示空间复杂度。

时间复杂度和空间复杂度详解,布布扣,bubuko.com

时间: 2024-08-03 23:22:10

时间复杂度和空间复杂度详解的相关文章

算法的时间复杂度和空间复杂度详解

通常,对于一个给定的算法,我们要做 两项分析.第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式.数学归纳法等.而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度.算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否.因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的.       算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量.而度量一个程序的执行时间通常有两种

算法时间复杂度和空间复杂度详解

算法的时间复杂度和空间复杂度合称为算法的复杂度. 1.时间复杂度 (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了.并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法中的语句执行次数称为语句频度或时间频度.记为T(n). (2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时

[转] 时间复杂度和空间复杂度详解

算法的时间复杂度和空间复杂度合称为算法的复杂度. 1.时间复杂度 (1)时间频度 一 个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间 多,哪个算法花费的时间少就可以了.并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法中的语 句执行次数称为语句频度或时间频度.记为T(n). (2) 时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变

算法的时间、空间复杂度详解

一.算法 1.算法是对待定问题求解步骤的一种描述 2.衡量算法的指标: 时间复杂度:执行这个算法需要消耗多少时间,即算法计算执行的基本操作次数 空间复杂度:这个算法需要消耗多少空间,即算法在运行过程中临时占用存储空间大小的度量,强调的是辅助空间的大小(对数据进行操作的工作单元和存储一些计算的辅助单元),而不是指所有数据所占用的空间 3.同一个问题可以用不同的算法解决,而一个算法的优劣将影响到算法乃至程序的效率.算法分析的目的在于为特定的问题选择合适的算法.一个算法的评价主要从时间复杂度和空间复杂

Heapsort 堆排序算法详解(Java实现)

Heapsort (堆排序)是最经典的排序算法之一,在google或者百度中搜一下可以搜到很多非常详细的解析.同样好的排序算法还有quicksort(快速排序)和merge sort(归并排序),选择对这个算法进行分析主要是因为它用到了一个非常有意思的算法技巧:数据结构 - 堆.而且堆排其实是一个看起来复杂其实并不复杂的排序算法,个人认为heapsort在机器学习中也有重要作用.这里重新详解下关于Heapsort的方方面面,也是为了自己巩固一下这方面知识,有可能和其他的文章有不同的入手点,如有错

57. 数对之差的最大值:4种方法详解与总结[maximum difference of array]

[本文链接] http://www.cnblogs.com/hellogiser/p/maximum-difference-of-array.html [题目] 在数组中,数字减去它右边的数字得到一个数对之差.求所有数对之差的最大值.例如在数组{2, 4, 1, 16, 7, 5, 11, 9}中,数对之差的最大值是11,是16减去5的结果. [分析] 看到这个题目,很多人的第一反应是找到这个数组的最大值和最小值,然后觉得最大值减去最小值就是最终的结果.这种思路忽略了题目中很重要的一点:数对之差

POSIX 线程详解(2-线程创建和销毁)

算法旨在用尽可能简单的思路解决问题,理解算法也应该是一个越看越简单的过程,当你看到算法里的一串概念,或者一大坨代码,第一感觉是复杂,此时不妨从例子入手,通过一个简单的例子,并编程实现,这个过程其实就可以理解清楚算法里的最重要的思想,之后扩展,对算法的引理或者更复杂的情况,对算法进行改进.最后,再考虑时间和空间复杂度的问题. 了解这个算法是源于在Network Alignment问题中,图论算法用得比较多,而对于alignment,特别是pairwise alignment, 又经常遇到maxim

HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 29942    Accepted Submission(s): 10516 Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem

(转)详解八大排序算法

概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 我们这里说说八大排序就是内部排序. 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序.堆排序或归并排序序. 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短: 1.插入排序—直接插入排序(Straight Insertion Sort) 基本思想: 将一个记录插入到