$\bf命题1:$设正项级数$\sum\limits_{n = 1}^\infty {{a_n}} $发散,且${s_n} =
\sum\limits_{k = 1}^n {{a_k}} $,试讨论级数$\sum\limits_{n = 1}^\infty
{\frac{{{a_n}}}{{{s_n}^\alpha }}} \ $的敛散性
证明:$\left( 1 \right)$当$\alpha = 1$时,由正项级数$\sum\limits_{n = 1}^\infty{{a_n}}
$发散知,$\lim \limits_{n \to \infty } {s_n} = + \infty $且$\left\{ {{s_n}}
\right\}$严格递增,于是
∑k=mnaksk≥1sn∑k=mnak=1sn∑k=mn(sk?sk?1)=1sn(sn?sm?1)>1sn(sn?sm)
即对任意$n > m > 0$,固定$m$,有
∑k=mnaksk>sn?smsn
由$\lim \limits_{n \to \infty } {s_n} = + \infty $知,
limn→∞sn?smsn=limn→∞(1?smsn)=1
从而由极限的保号性知,存在$N > 0$,当$n > N$时,有
sn?smsn>12
即$\sum\limits_{k = m}^n {\frac{{{a_k}}}{{{s_k}}}} >
\frac{1}{2}$,由$\bf{Cauchy收敛准则}$知,级数$\sum\limits_{n = 1}^\infty
{\frac{{{a_n}}}{{{s_n}}}} $发散
$\left( 2 \right)$当$\alpha < 1$时,由$\lim \limits_{n \to \infty } {s_n} = +
\infty $知,对任意$\varepsilon > 0$,存在$N > 0$,当$n > N$时,有
sn>ε
特别地,取$\varepsilon = 1$,则${s_n} > 1$,从而可知当$n > N$时,有
ansnα>ansn
而$\sum\limits_{n = 1}^\infty
{\frac{{{a_n}}}{{{s_n}}}}$发散,由$\bf比较判别法$知,$\sum\limits_{n = 1}^\infty
{\frac{{{a_n}}}{{{s_n}^\alpha }}} $发散
$\left( 3\right)$当$\alpha > 1$时,设$f\left( x \right) = {x^{1 - \alpha
}}$,则由微分中值定理知,存在${\xi _n} \in \left( {{s_{n -1}},{s_n}} \right)$,使得
sn1?α?sn?11?α=(1?α)ξn?α(sn?sn?1)
从而可知
ansnα<ξn?α(sn?sn?1)=1α?1(sn?11?α?sn1?α)
于是
0<∑k=1nakskα≤a1s1α+1α?1(s11?α?sn1?α)<αα?1a11?α
从而由正项级数收敛的基本定理知,级数$\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{{s_n}^\alpha
}}} $收敛
$\bf注1:$正项级数收敛的基本定理:正项级数收敛当且仅当其部分和数列有界
$\bf注2:$我们可得到下面命题:设正项级数$\sum\limits_{n = 1}^\infty {{a_n}}
$发散,则存在收敛于$0$的正项数列$\left\{ {{b_n}} \right\}$,使得级数$\sum\limits_{n =
1}^\infty {{a_n}{b_n}} $仍发散