stm32 堆和栈(stm32 Heap & Stack)

关于堆和栈已经是程序员的一个月经话题,大部分有是基于os层来聊的。

那么,在赤裸裸的单片机下的堆和栈是什么样的分布呢?以下是网摘:

刚接手STM32时,你只编写一个

int main()

{

while(1);

}

BUILD://Program Size: Code=340 RO-data=252 RW-data=0 ZI-data=1632

编译后,就会发现这么个程序已用了1600多的RAM,要是在51单片机上,会心疼死了,这1600多的RAM跑哪儿去了,

分析map,你会发现是堆和栈占用的,在startup_stm32f10x_md.s文件中,它的前面几行就有以上定义,

这下该明白了吧。

Stack_Size   EQU   0x00000400

Heap_Size   EQU   0x00000200

以下引用网上资料 理解堆和栈的区别

(1)栈区(stack):由编译器自动分配和释放,存放函数的参数值、局部变量的值等,其操作方式类似

于数据结构中的栈。

(2)堆区(heap):一般由程序员分配和释放,若程序员不释放,程序结束时可能由操作系统回收。分配

方式类似于数据结构中的链表。

(3)全局区(静态区)(static):全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态

变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束后由系

统自动释放。

(4)文字常量区:常量字符串就是存放在这里的。

(5)程序代码区:存放函数体的二进制代码。

例如:

int a=0;   //全局初始化区

char *p1;   //全局未初始化区

main()

{

int b;   //栈

char s[]="abc";   //栈

char *p3= "1234567";   //在文字常量区Flash

static int c =0 ;   //静态初始化区

p1= (char *)malloc(10);   //堆区

strcpy(p1,"123456");   //"123456"放在常量区

}

所以堆和栈的区别:

stack的空间由操作系统自动分配/释放,heap上的空间手动分配/释放。

stack的空间有限,heap是很大的自由存储区。

程序在编译期和函数分配内存都是在栈上进行,且程序运行中函数调用时参数的传递也是在栈上进行。

------------------------------------------------------------------------------------------------------

1.堆和栈大小

定义大小在startup_stm32f2xx.s

Stack_Size  EQU  0x00000400

AREA  STACK, NOINIT, READWRITE, ALIGN=3 
Stack_Mem  SPACE  Stack_Size 
__initial_sp

; Heap Configuration 
;  Heap Size (in Bytes) <0x0-0xFFFFFFFF:8> 
;

Heap_Size  EQU  0x00000200

AREA  HEAP, NOINIT, READWRITE, ALIGN=3 
__heap_base

2.堆和栈位置

通过MAP文件可知

HEAP  0x200106f8  Section  512  startup_stm32f2xx.o(HEAP) 
STACK  0x200108f8  Section  1024  startup_stm32f2xx.o(STACK)

__heap_base  0x200106f8  Data  0  startup_stm32f2xx.o(HEAP) 
__heap_limit  0x200108f8  Data  0  startup_stm32f2xx.o(HEAP) 
__initial_sp  0x20010cf8  Data  0  startup_stm32f2xx.o(STACK)

显然 Cortex-m3资料可知:__initial_sp是堆栈指针,它就是FLASH的0x8000000地址前面4个字节(它根据堆栈大小,由编译器自动生成)

显然堆和栈是相邻的。

3.堆和栈空间分配

栈:向低地址扩展

堆:向高地址扩展

显然如果依次定义变量

先定义的栈变量的内存地址比后定义的栈变量的内存地址要大

先定义的堆变量的内存地址比后定义的堆变量的内存地址要小

4.堆和栈变量

栈:临时变量,退出该作用域就会自动释放

堆:malloc变量,通过free函数释放

另外:堆栈溢出,编译不会提示,需要注意

------------------------------------------------------------------------------------------------------

如果使用了HEAP,则必须设置HEAP大小。 
如果是STACK,可以设置为0,不影响程序运行。 
IAR STM8定义STACK,是预先在RAM尾端分配一个字节的区域作为堆栈预留区域。 
当程序静态变量,全局变量,或者堆与预留堆栈区域有冲突,编译器连接的时候就会报错。 
你可以吧STACK设置为0,并不影响运行。(会影响调试,调试会报堆栈溢出警告)。 
其实没必要这么做。 
一般程序,(在允许范围内)设置多少STACK,并不影响程序真实使用的RAM大小, 
(可以试验,把STACK设置多少,编译出来的HEX文件都是一样), 
程序还是按照它原本的状态使用RAM,把STACK设置为0,并不是真实地减少RAM使用。 
仅仅是欺骗一下编译器,让程序表面上看起来少用了RAM。 
而设置一定size的STACK,也并不是真的就多使用了RAM,只是让编译器帮你 
检查一下,是否能够保证有size大小的RAM没有被占用,可以用来作为堆栈。 
以上仅针对IAR STM8.

------------------------------------------------------------------------------------------------------

从以上网摘来看单片机的堆和栈是分配在RAM里的,有可能是内部也有可能是外部,可以读写;

:存函数的临时变量,即局部变量,函数返回时随时有可能被其他函数栈用。所以栈是一种分时轮流使用的存储区,

编译器里定义的Stack_Size,是为了限定函数的局部数据活动的范围,操过这么范围有可以跑飞,也就是栈溢出;

Stack_Size不影响Hex,更不影响Hex怎么运行的,只是在Debug调试时会提示错。栈溢出也有是超过了国界进行

活动,只要老外没有意见,你可以接着玩,有老外不让你玩,你就的得死,或是大家都死(互相撕杀),有的人写

单片机代码在函数里定义一个大数组 int buf[8192],栈要是小于8192是会死的很惨。

:存的是全局变量,这变量理论上是所有函数都可以访问的,全局变量有的有初始值,但这个值不是存在RAM里的,是

存在Hex里,下载到Flash里,上电由代码(编译器生成的汇编代码)搬过去的。有的人很“霸道”,上电就霸占已一块很

大的RAM(Heap_Size),作为己有(malloc_init),别人用只能通过他们管家借(malloc),用完还得换(free)。所以

一旦有“霸道”的人出现是编译器里必须定义Heap_Size,否则和他管家借也没有用。

总之:堆和栈有存在RAM里,他两各分多少看函数需求,但是他两的总值不能超过单片机硬件的实际RAM尺寸,否则只能

到海里玩(淹死了)或是自己打造船接着玩(外扩RAM)。

时间: 2024-10-23 20:31:48

stm32 堆和栈(stm32 Heap & Stack)的相关文章

[No0000146]深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing)理解堆与栈3/4

前言 虽然在.Net Framework 中我们不必考虑内在管理和垃圾回收(GC),但是为了优化应用程序性能我们始终需要了解内存管理和垃圾回收(GC).另外,了解内存管理可以帮助我们理解在每一个程序中定义的每一个变量是怎样工作的. 简介 这一节我们将介绍引用类型变量在堆中存储时会产生的问题,同时介绍怎么样使用克隆接口ICloneable去修复这种问题. 复制不仅仅是复制 为了更清晰的阐述这个问题,让我们测试一下在堆中存储值类型变量和引用类型变量时会产生的不同情况. 值类型测试 首先,我们看一下值

STM32的堆与栈与编译信息查看

因为一个项目中使用malloc函数动态分配内存400多个字节,返回为0,分配失败.查找失败原因,为堆空间不足分配导致.查看堆和栈分别设置了2K,按正常情况看应能满足分配空间,原因可能因为栈分配空间不够,导致到堆的内存空间致使,堆的内存空间过小.下面就说一下STM32的RAM区的分配,堆和栈的信息和编译信息查看. 以下引用网上资料 理解堆和栈的区别和KEIL打印信息的理解 (1)栈区(stack):由编译器自动分配和释放,存放函数的参数值.局部变量的值等,其操作方式类似 于数据结构中的栈. (2)

C# Heap(ing) Vs Stack(ing) in .NET [C# 堆和栈的使用以及垃圾回收原理]

最近在<C#Corner>上看到了一篇关于.NET内存管理以及垃圾回收的文章,虽说是英文的内容,但还是硬着头皮读了下来.发现并不是我原本想象中的那么枯燥,因为语言通俗而且还有很多图片示意,感觉让我又对"堆"和"栈"以及垃圾回收机制有了更加深刻的理解和认知,记录下来提醒自己尽量书写优质的代码,而不是只管实现功能,不管性能优劣去蛮干.  [文章出自: http://www.c-sharpcorner.com/article/c-sharp-heaping-v

java 中的内存分为四个部分:stack(栈),heap(堆),data segment

http://www.qdmm.com/BookReader/113167,54166719.aspx http://www.qdmm.com/BookReader/113167,54166867.aspx http://www.qdmm.com/BookReader/113167,54166868.aspx http://www.qdmm.com/BookReader/113167,54166869.aspx http://www.qdmm.com/BookReader/113167,5416

Java Stack栈和Heap堆的区别

首先分清楚Stack,Heap的中文翻译:Stack—栈,Heap—堆. 在中文里,Stack可以翻译为“堆栈”,所以我直接查找了计算机术语里面堆和栈开头的词语: 堆存储: heapstorage 堆存储分配: heapstorage allocation 堆存储管理: heap storage management 栈编址: stack addressing 栈变换:stack transformation 栈存储器:stack memory 栈单元: stack cell 接着,总结在Jav

stack vs heap 堆与栈的区别

申请方式      申请后系统的响应      申请大小的限制      申请效率的比较:      堆和栈中的存储内容      存取效率的比较

stm32 堆溢出

STM32 堆溢出 遇到的问题 最近在给旧项目添加了段代码,程序经常到某个状态就突然崩溃了,也不一定是在运行新代码的时候崩溃.检查了几遍代码,数组越界访问,除数为0,内存泄露等常见的问题都不存在. 原因 最后发现,问题出在程序中用mallc动态分配内存,却没对是否成功分配做检查.程序中,因为堆空间不足,分配内存不成功,malloc返回NULL.后面的代码对NULL地址进行写操作,引起了程序崩溃. 后续的一些概念整理 STM32系列单片机在startup_stm32fxx.s文件中,定义了Heap

Heap Spray:堆与栈的协同攻击

1:应用场景 在针对浏览器的攻击中,常常会结合使用堆和栈协同利用漏洞. (1)当浏览器或其使用的ActiveX 控件中存在溢出漏洞时,攻击者就可以生成一个特殊的HTML 文件来触发这个漏洞. (2)不管是堆溢出还是栈溢出,漏洞触发后最终能够获得EIP. (3)有时我们可能很难在浏览器中复杂的内存环境下布置完整的shellcode. (4)页面中的JavaScript 可以申请堆内存,因此,把shellcode 通过JavaScript 布置在堆中 成为可能. 2:原理 在使用Heap Spray

JVM学习(2)——技术文章里常说的堆,栈,堆栈到底是什么,从os的角度总结--转载http://www.cnblogs.com/kubixuesheng/p/5202561.html

转载自---http://www.cnblogs.com/kubixuesheng/p/5202561.html 俗话说,自己写的代码,6个月后也是别人的代码--复习!复习!复习!涉及到的知识点总结如下: 堆栈是栈 JVM栈和本地方法栈划分 Java中的堆,栈和c/c++中的堆,栈 数据结构层面的堆,栈 os层面的堆,栈 JVM的堆,栈和os如何对应 为啥方法的调用需要栈 属于月经问题了,正好碰上有人问我这类比较基础的知识,无奈我自觉回答不是有效果,现在深入浅出的总结下: 前一篇文章总结了:JV