51nod 1183 编辑距离

1183 编辑距离

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题

 收藏

 关注

编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

例如将kitten一字转成sitting:

sitten (k->s)

sittin (e->i)

sitting (->g)

所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。

给出两个字符串a,b,求a和b的编辑距离。

Input

第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。

Output

输出a和b的编辑距离

Input示例

kitten
sitting

Output示例

3

令f[i][j]表示a串前i个,b串前j个的编辑距离状态转移:若a串第i个与b串第j个相等,那么f[i][j]=f[i-1][j-1]否则,f[i][j]可由3个状态转移而来:①f[i-1][j-1]+1 把a[i]改为b[j] 等价于把b[j]改为a[i]②f[i-1][j]+1 删去a[i] 等价于在b[j]前插入a[i]③f[i][j-1]+1 删去b[j],等价于在a[i]前插入b[j] 初始化:f[0][i]=i  f[i][0]=i
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
char a[1001],b[1001];
int f[1001][1001];
int main()
{
    scanf("%s%s",a+1,b+1);
    int la=strlen(a+1),lb=strlen(b+1);
    for(int i=1;i<=la;i++) f[0][i]=i;
    for(int i=1;i<=lb;i++) f[i][0]=i;
    for(int i=1;i<=la;i++)
     for(int j=1;j<=lb;j++)
      if(a[i]==b[j]) f[i][j]=f[i-1][j-1];
      else f[i][j]=min(min(f[i-1][j],f[i][j-1]),f[i-1][j-1])+1;
    printf("%d",f[la][lb]);
}
 
时间: 2024-10-21 16:07:52

51nod 1183 编辑距离的相关文章

51nod 1183 编辑距离(dp)

题目链接:51nod 1183 编辑距离 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 using namespace std; 5 const int N = 1001; 6 char a[N], b[N]; 7 int dp[N][N];//dp[i][j]:a串的前i个字符转化成b串的前j个字符的最少操作数 8 int main(){ 9 int i, j; 10 scanf(&quo

51nod 1183 - 编辑距离 - [简单DP][编辑距离问题][Levenshtein距离问题]

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten (k->s) sittin (e->i) sitting (->g) 所以k

(DP)51NOD 1183 编辑距离

编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten (k->s) sittin (e->i) sitting (->g) 所以kitten和sitting的编辑距离是3.俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念. 给出两个字符串a,b,求

动态规划 51nod 1183

题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 1183 编辑距离  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成s

51nod 简单的动态规划

1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列. Input 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) Output 输出最长的子序列,如果有多个,随意输出1个. Input示例 a

51nod1183 编辑距离

1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten (k->s) sittin (e->i) sitting (->g) 所以kitten和sitting的编辑

[dp]编辑距离问题

https://www.51nod.com/tutorial/course.html#!courseId=3 转移方程: 注意如何对齐的. 这个算法的特点是,S和T字符串左边始终是对齐的.为了更好地理解这个算法中的递推公式,我们把两个字符串按照特定方式对齐. 以字符串S=ALGORITHM和T=ALTRUISTIC为例: S和T的字符对齐方式为,假设我们已经知道最优的编辑方式: 如果删去S中字符,则该字符对齐T中的空格 如果删去T中字符,则该字符对齐S中的空格 如果替换S中字符为T中字符,则这两

51nod 1201 整数划分(dp)

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1201 题解:显然是一道dp,不妨设dp[i][j]表示数字i分成j个一共有几种分法. 那么转移方程式为: dp[i][j] = dp[i - 1][j] + dp[i - 1][j - 1] 表示将i - 1划分为j个数,然后j个数都+1 还是不重复,将i - 1划分为j - 1个数,然后j - 1个数都+1,再加上1这个数. 然后就是j的范围要知道1+2+

51nod 1138 连续整数的和(数学)

题目描述: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1138 给出一个正整数N,将N写为若干个连续数字和的形式(长度 >= 2).例如N = 15,可以写为1 + 2 + 3 + 4 + 5,也可以写为4 + 5 + 6,或7 + 8.如果不能写为若干个连续整数的和,则输出No Solution. Input 输入1个数N(3 <= N <= 10^9). OutPut 输出连续整数中的第1个数,如果有多