不涉及什么算法,只是简单的套用模板进行计算。
如果一个向量进行逆时针旋转,那么可以使用定义的函数 Rotate(v,rad)进行计算。
但是如果进行顺时针旋转,那么需要将rad改为-rad,也就是Rotate(v,-rad)进行计算。
精度的控制为 1e-10;
14112243 | 11178 | Morley‘s Theorem | Accepted | C++ | 0.055 | 2014-08-29 11:09:31 |
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<cmath> #include<vector> #include<queue> #include<map> #include<set> using namespace std; #define INF 1 << 30 #define eps 1e-10 #define Vector Point /*=============================================*/ double dcmp(double x){ if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } struct Point{ double x; double y; Point(double a = 0,double b = 0): x(a),y(b) {}; friend bool operator < (Point p,Point q){ if(p.x != q.y) return p.y - q.y; else return p.x - q.x; } friend Vector operator + (Point p,Point q){ return Vector(p.x + q.x , p.y + q.y); } friend Vector operator - (Point p,Point q){ return Vector(p.x - q.x , p.y - q.y); } friend Vector operator * (Point p,double t){ return Vector(p.x * t , p.y * t); } friend Vector operator / (Point p,double t){ return Vector(p.x / t , p.y / t); } friend bool operator == (Point p,Point q){ return dcmp(p.x - q.x) == 0 && dcmp(p.y - q.y) == 0; } }; double Dot(Vector p, Vector q){ //向量点积 return p.x * q.x + p.y * q.y; } double Length(Vector p){ //向量长度 return sqrt(p.x*p.x + p.y * p.y); } double Angle(Vector p ,Vector q){ return acos( Dot(p, q) /( Length(p) * Length(q) ) ); } double Cross(Vector p,Vector q){ return p.x * q.y - p.y * q.x; } double Area(Point a,Point b,Point c){ return Cross(a - b , c - b); } Vector Rotate(Vector p,double angle){ return Vector(p.x * cos(angle) - p.y * sin(angle), p.x * sin(angle) + p.y * cos(angle)); } Vector Normal(Vector p){ //求法向量 double L = Length(p); return Vector( - p.y / L , p.x / L); } Point GetLineCross(Vector v,Point p,Vector w,Point q){ Vector u = p - q; double t = Cross(w,u) / Cross(v,w); return p + v * t; } double Distance(Point p,Point a,Point b){ //点到射线的距离 Vector v1 = b - a; Vector v2 = p - a; return fabs(Cross(v1,v2)) / Length(v1); } double Distance2(Point p,Point a,Point b){ if(a == b) return Length(p - a); Vector v1 = b - a , v2 = p - a, v3 = p - b; if(dcmp(Dot(v1,v2)) < 0) return Length(v2); else if(dcmp(Dot(v1,v3)) > 0) return Length(v3); else return fabs(Cross(v1,v2))/ Length(v1); } Point GetLinePoint(Point p,Point a,Point b){ Vector v = b - a; return a + v * (Dot(v, p -a ) / Dot(v,v)); } bool If_Cross(Point a1,Point a2,Point b1,Point b2){ double c1 = Cross(a2 - a1 , b1 - a1) , c2 = Cross(a2 - a1 , b2 - a1), c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } bool If_InLine(Point p,Point a1,Point a2){ return dcmp(Cross(a1 - p , a2 - p)) == 0 && dcmp(Dot(a1 - p , a2 - p)) < 0; } Point GetPoint(Point a,Point b,Point c){ Vector v1 = c - b; double rad = Angle(a - b,v1); v1 = Rotate(v1, rad / 3); Vector v2 = b - c; double _rad = Angle(a - c, v2); //负数代表顺时钟转动 v2 = Rotate(v2, - _rad / 3); return GetLineCross(v1,b,v2,c); } int main(){ int T; scanf("%d",&T); while(T--){ Point a , b , c; scanf("%lf%lf",&a.x,&a.y); scanf("%lf%lf",&b.x,&b.y); scanf("%lf%lf",&c.x,&c.y); Point d = GetPoint(a,b,c); Point e = GetPoint(b,c,a); Point f = GetPoint(c,a,b); printf("%.6f %.6f %.6f %.6f %.6f %.6f\n",d.x,d.y,e.x,e.y,f.x,f.y); } return 0; }
11178 - Morley's Theorem【几何】
时间: 2024-10-13 22:53:23