深度学习在gilt应用——用图像相似性搜索引擎来商品推荐和服务属性分类

机器学习起源神经网络,而深度学习是机器学习的一个快速发展的子领域。最近的一些算法的进步和GPU并行计算的使用,使得基于深度学习的算法可以在围棋和其他的一些实际应用里取得很好的成绩。

时尚产业是深度学习的目标领域之一。闪购网站Gilt就一直在使用深度学习来进行产品推荐和服装的属性分类。裙子样式是通过Facebook的Torch库来自动地识别其适用场合、裙子轮廓、领口和袖子类型的。Torch使用由ImageNet数据集训练得到的模型来利用每张图片已经具有的标签,并通过Gilt选定的具体特征来增强它们。该系统使用基于EBS和P2实例的亚马逊云基础架构,每个服务器最多可提供16个GPU。为了测试分类质量,该系统使用F1分数作为评价指标,它同时兼顾了分类模型的准确率和召回率。Gilt也测试了SaaS等替代品,但它们在准确度和提供的标签方面都不能令人满意。

另一方面,针对裙子相似性的产品推荐是基于TiefVision来实现的,它是一种基于深度学习的图像相似性搜索引擎。TiefVision也是基于ImageNet数据的分类,它在神经网络的最后几层用一个特定的网络来代替,这种技术也叫迁移学习。第一步是使用Yann LeCunn的OverFeat方法在图像中对裙子进行定位。定位之后,该算法使用一个Siamese网络Hinge损失函数来进行训练。

随着英特尔开源面向Apache Spark的分布式深度学习库BigDL,亚马逊推广MXNet作为AWS的深度学习框架,并且将深度学习用于其他用例中的异常检测,现在看起来不仅软件正在“吞噬”这个世界,而且深度学习正在成为机器学习的主流,渐渐取代传统机器学习的地位。

时间: 2024-10-05 23:30:10

深度学习在gilt应用——用图像相似性搜索引擎来商品推荐和服务属性分类的相关文章

深度学习之图像的数据增强

在图像的深度学习中,为了丰富图像训练集,更好的提取图像特征,泛化模型(防止模型过拟合),一般都会对数据图像进行数据增强, 数据增强,常用的方式,就是旋转图像,剪切图像,改变图像色差,扭曲图像特征,改变图像尺寸大小,增强图像噪音(一般使用高斯噪音,盐椒噪音)等. 但是需要注意,不要加入其他图像轮廓的噪音. 对于常用的图像的数据增强的实现,如下: 1 # -*- coding:utf-8 -*- 2 """数据增强 3 1. 翻转变换 flip 4 2. 随机修剪 random

看得“深”、看得“清” —— 深度学习在图像超清化的应用

日复一日的人像临摹练习使得画家能够仅凭几个关键特征画出完整的人脸.同样地,我们希望机器能够通过低清图像有限的图像信息,推断出图像对应的高清细节,这就需要算法能够像画家一样"理解"图像内容.至此,传统的规则算法不堪重负,新兴的深度学习照耀着图像超清化的星空. 本文首发于<程序员>杂志 图1. 最新的Pixel递归网络在图像超清化上的应用.左图为低清图像,右图为其对应的高清图像,中间为算法生成结果.这是4倍超清问题,即将边长扩大为原来的4倍. 得益于硬件的迅猛发展,短短几年间,

CNCC2017中的深度学习与跨媒体智能

转载请注明作者:梦里茶 目录 机器学习与跨媒体智能 传统方法与深度学习 图像分割 小数据集下的深度学习 语音前沿技术 生成模型 基于贝叶斯的视觉信息编解码 珠算:基于别噎死推断的深度生成模型库 图像与视频生成的规则约束 景深风景生成 骨架约束的人体视频生成 跨媒体智能 视频检索的哈希学习 多媒体与知识图谱 基于锚图的视觉数据分析 视频问答 细粒度分类 跨媒体关联与检索(待补充) 正片开始 传统方法与深度学习 图像分割 图像分割是医疗图像中一个很重要的任务,通常分为分割,配准,可视化几个子任务.这

卷积在深度学习中的作用(转自http://timdettmers.com/2015/03/26/convolution-deep-learning/)

卷积可能是现在深入学习中最重要的概念.卷积网络和卷积网络将深度学习推向了几乎所有机器学习任务的最前沿.但是,卷积如此强大呢?它是如何工作的?在这篇博客文章中,我将解释卷积并将其与其他概念联系起来,以帮助您彻底理解卷积. 已经有一些关于深度学习卷积的博客文章,但我发现他们都对不必要的数学细节高度混淆,这些细节没有以任何有意义的方式进一步理解.这篇博客文章也会有很多数学细节,但我会从概念的角度来看待他们,在这里我用每个人都应该能够理解的图像表示底层数学.这篇博文的第一部分是针对任何想要了解深度学习中

深度学习、机器学习与NLP的前世今生

随着深度学习的发展,自然语言处理领域的难题也得到了不断突破,AlphaGo项目的主要负责人David Silver曾说"深度学习 (DL)+ 强化学习 (RL) = 人工智能 (AI)".目前深度学习在自然语言处理上主要有哪些应用?在工程实践中是否会有哪些瓶颈?以下内容是根据达观数据联合创始人高翔在<深度学习与文本智能处理>直播的总结. 一.为什么做文本挖掘 什么是NLP?简单来说:NLP的目的是让机器能够理解人类的语言,是人和机器进行交流的技术.它应用在我们生活中,像:智

ICCV研讨会:实时SLAM的未来以及深度学习与SLAM的比较

这篇短文写的很好,我把它copy到这里供大家学习 上一届「国际计算机视觉大会(ICCV:International Conference of Computer Vision )」成为了深度学习(Deep Learning)技术的主场,但在我们宣布卷积神经网络(ConvNet)的全面胜利之前,让我们先看看计算机视觉的「非学习(non-learning)」几何方面的进展如何.同步定位与地图构建(SLAM: Simultaneous Localization and Mapping )可以说是机器人

安防大数据挖掘的利刃:模式识别和深度学习技术

人工智能的概念提出已经很多年,但最近一次大热是在“人机大战”战胜世界围棋高手李世石的AlphaGo.同样,近几年安防行业热门的深度学习和模式识别的概念也频频出现在公众的视野当中,那么它们是如何应用在安防领域中?目前最前沿的应用又有哪些?以下将为您一一解答. 安防大数据挖掘 平安城市从2010年在全国推广至今已经6年,目前各地平安城市建设即将进入扩容改建期,需要更加综合与智能的整体解决方案.公共安防已不再局限于扩张视频监控覆盖广度和密度以及清晰度,而是由扩密度的传统安防时代向注重视频大数据挖掘.使

深度学习“引擎”之争:GPU加速还是专属神经网络芯片?

深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引擎的引擎,基本所有的深度学习计算平台都采用GPU加速.同时,深度学习已成为GPU提供商NVIDIA的一个新的战略方向,以及3月份的GTC 2015的绝对主角. 那么,GPU用于深度学习的最新进展如何?这些进展对深度学习框架有哪些影响?深度学习开发者应该如何发挥GPU的潜力?GPU与深度学习结合的前景

为什么深度学习几乎成了计算机视觉研究的标配?

https://zhuanlan.zhihu.com/p/21533690 标签: 深度学习计算机视觉研究标配 2016-07-09 16:38 1951人阅读 评论(0) 收藏 举报  分类: 计算机视觉CV(308)  目录(?)[+] 本次CVPR 2016上,深度学习几乎成了如今计算机视觉研究的标配,人脸识别.图像识别.视频识别.行人检测.大规模场景识别的相关论文里都用到了深度学习的方法,加上Google,Facebook这样的大企业助力,很多人疑惑,为什么深度学习相比其它的AI实现方法