为什么watch机制不是银弹?

几乎所有构建系统都选择使用watch机制来解决开发过程中需要反复生成构建后文件的问题,但在watch机制下,长期以来我们必须忍受修改完代码,保存完代码必须喝口茶才能刷新看看效果的问题。在这里我们尝试探讨为什么watch不是银弹,并尝试寻找一种更好的方案来解决这个问题。

watch基于的事实

当一个文件修改,我们能知道其修改可能导致的文件修改,那么重新构建这些文件即可。

通常对于文件A,构建成文件B这种场景,这种对应关系是极好确定的。但现实场景下,构建过程往往不是那么简单。例如:

文件A + 文件B(被文件A引用) -> 文件C

在这种场景下,文件B的修改,可能难以定位哪些文件需要重新跑构建任务,因为可能有很多文件引用了文件B。

除非我们建立一个依赖树,并在每次文件更新的情况下更新依赖树,并根据新的依赖树触发文件构建。但这对每一个插件都需要自行实现这个机制,并且极易出错。故实际上watch机制仅仅是重跑了整个task。所以当项目越来越大的时候,watch机制将越来越慢(因为越来越多文件需要重新跑整个过程,即使通过缓存减少了整个过程所需的耗时)。

解决方案

    • src直接可用

      AlloyTeam & @ldjking,简单来说直接让src直接可跑,把构建任务放置在浏览器端,甚至根本不构建,既可做到及时修改及时刷新,在开发过程中减少了时间消耗。线下构建仅仅负责性能优化上的问题,不负责开发效率。
      典型代表有LESSReact等。但也有一些问题:

      1. 难以在浏览器端实现优雅的构建方式,难以提供强大的功能进一步减少开发成本,大部分只能采用类似<style type="text/less"></style>的方式引入脚本。
      2. 开发模式下的执行顺序不一定和实际场景相同,可能导致隐形bug出现,例如实现一个HTML inline由于开发模式下inline是异步的,而发布模式下inline时同步的,产生莫名其妙的bug。
      3. 浏览器编译性能堪忧,例如js版的sass,编译速度几乎无法忍受。
      4. 需要维护线上、线下两套构建系统,增加了工具开发成本。
    • 本地服务器动态构建

      一个事实是:在合理的规范支持下,我们可以从浏览器请求的文件,回溯到该文件构建过程中的入口文件。这样我们就可以动态触发一次构建过程。

      通过在本地建立一个服务器,让服务器捕获请求后,在服务器中动态构建。只要回溯到入口文件,我们便能将入口文件丢进gulp插件组成的管道中,则输出便是浏览器需要的文件。

      这样我们就能解决上面的所有问题。

时间: 2024-08-10 03:01:49

为什么watch机制不是银弹?的相关文章

【转】图解 HTTP协议/IIS 原理及ASP.NET运行机制浅析

前言 前一段在整理邮件的时候发现几年前和CDD老师交流时的一份邮件.下面是简单摘要: “从技术角度来说,无论哪一个阵营,跟新技术都是不可避免的,也是很累的,当然作为一个程序员来说,也是必须的.要想让技术的更新对自己的影响减小,基础就必须打牢.所以,底层的东西和抽象层的东西需要下一番功夫.因为说到底,无论什么技术,无非就是架构和最终的实现,技术框架只是应用开发的一个平台一种技术,如果了解了具体的东西,技术更新对你来说就没什么影响了,或者换句话说,你要学一种新的技术,速度和效率会非常之高.” 上面一

jvm系列(一):java类的加载机制

java类的加载机制 原文:http://www.cnblogs.com/ityouknow/p/5603287.html 1.什么是类的加载 类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区内,然后在堆区创建一个java.lang.Class对象,用来封装类在方法区内的数据结构.类的加载的最终产品是位于堆区中的Class对象,Class对象封装了类在方法区内的数据结构,并且向Java程序员提供了访问方法区内的数据结构的接口. 类加载器并不需要等到某个

Android小例子:使用反射机制来读取图片制作一个图片浏览器

效果图: 工程文件夹: 该例子可供于新手参考练习,如果有哪里不对的地方,望指正>-< <黑幕下的人> java代码(MainActivity.java): package com.example.imageswitchtest; import java.lang.reflect.Field; import android.app.Activity; import android.os.Bundle; import android.util.Log; import android.v

TCP拥塞控制机制

我们知道TCP是拥有拥塞控制机制的,而UDP是没有的,为什么需要拥塞控制机制呢,就是防止丢包过多导致传输效率低下.网络中传输的包太多,路由器的缓存又不够,每一个发送端都以自己想要的发送速率发送包,自然会导致网络拥塞.所以我TCP就包括了拥塞控制机制. 有几种拥塞控制方法? 2种 1.端到端拥塞控制.网络层没有显示的告知传输层此时网络出现拥塞了,传输层通过报文段的丢失(超时或3次冗余确认得知)认为网络出现拥塞了,TCP会缩减其拥塞窗口,减小发送速率. 2.网络辅助的拥塞控制.网络层显示的告知发送端

Java性能优化之JVM GC(垃圾回收机制)

Java的性能优化,整理出一篇文章,供以后温故知新. JVM GC(垃圾回收机制) 在学习Java GC 之前,我们需要记住一个单词:stop-the-world .它会在任何一种GC算法中发生.stop-the-world 意味着JVM因为需要执行GC而停止了应用程序的执行.当stop-the-world 发生时,除GC所需的线程外,所有的线程都进入等待状态,直到GC任务完成.GC优化很多时候就是减少stop-the-world 的发生. JVM GC回收哪个区域内的垃圾? 需要注意的是,JV

Java必知必会:异常机制详解

一.Java异常概述 在Java中,所有的事件都能由类描述,Java中的异常就是由java.lang包下的异常类描述的. 1.Throwable(可抛出):异常类的最终父类,它有两个子类,Error与Exception. Throwable中常用方法有: getCause():返回抛出异常的原因.如果 cause 不存在或未知,则返回 null. getMeage():返回异常的消息信息. printStackTrace():对象的堆栈跟踪输出至错误输出流,作为字段 System.err 的值.

JAVA synchronized关键字锁机制(中)

synchronized 锁机制简单的用法,高效的执行效率使成为解决线程安全的首选. 下面总结其特性以及使用技巧,加深对其理解. 特性: 1. Java语言的关键字,当它用来修饰一个方法或者一个代码块的时候,能够保证在同一时刻最多只有一个线程执行该段代码.       2. 当一个线程同时访问object的一个synchronized(this)同步代码块时,其它线程仍然可以访问非修饰的方法或代码块.       3. 当多个线程同时访问object的synchronized(this)同步代码

FreakZ学习笔记:路由发现机制

路由发现机制 路由发现机制只有在发送通信包的过程中会被调用,而接收过程因为发送时候已经进行了通信链路的扫描和连接,所以不会再进行路由发现机制. 路由的所有处理机制都是在NWK层进行的,当然,路由发现机制也一样.当协议栈进行数据发送时,会依次按照APP->APS->NWK->MAC->PHY->Radio的层次关系来进行,APS层执行完成之后,会跳转到NWK层的nwk_data_req函数,该函数为NWK数据请求服务,接收APS层的数据并且加上NWK层的包头,然后将数据打包.n

Oracle基础学习2--Oracle登录与三种验证机制

首先,Oracle安装完毕有三个默认用户 ?  Sys:数据库对象的拥有者.权限最高.password在安装的时候(口令管理)能够改变 ?  System:数据库管理员,password为manager ?  Scott:一个普通用户,password为tiger 再看连接Oracle的三种验证机制 ?  操作系统验证(具体解释见以下) ?  password文件验证 ?  数据库验证 注:前两者适用于系统用户,比方:Sys.System等:最后一个适用于普通用户.比方:Scott. 再看Ora