hive 回避map-reduce job的场景

map-reduce 驱动需要消耗大量资源,也费时间。 对于简单查询,hive可以回避使用map-reduce,改用fetch task

--hiveconf

set hive.fetch.task.conversion=more;

那么对于select * from tab 这种就会很快。

如果有聚合计算,仍然会启动map-reduce。

如order by,count, group by等

时间: 2024-10-11 13:01:09

hive 回避map-reduce job的场景的相关文章

Map/Reduce个人实战--生成数据测试集

背景: 在大数据领域, 由于各方面的原因. 有时需要自己来生成测试数据集, 由于测试数据集较大, 因此采用Map/Reduce的方式去生成. 在这小编(mumuxinfei)结合自身的一些实战经历, 具体阐述下生成测试数据集的Map/Reduce程序该如何写? 场景构造: 假设某移动电信行业的某具体业务, 其记录了通话信息(包括拨打方/接听方/通话时间点/基站 等要素). 产商是不可能提供真实的用户数据用于测试的, 但提供了基本的数据规格. 具体针对该业务场景, 我们简单规划如下: num1 v

一步一步跟我学习hadoop(5)----hadoop Map/Reduce教程(2)

Map/Reduce用户界面 本节为用户採用框架要面对的各个环节提供了具体的描写叙述,旨在与帮助用户对实现.配置和调优进行具体的设置.然而,开发时候还是要相应着API进行相关操作. 首先我们须要了解Mapper和Reducer接口,应用通常须要提供map和reduce方法以实现他们. 接着我们须要对JobConf, JobClient,Partitioner,OutputCollector,Reporter,InputFormat,OutputFormat,OutputCommitter等进行讨

hadoop学习WordCount+Block+Split+Shuffle+Map+Reduce技术详解

转自:http://blog.csdn.net/yczws1/article/details/21899007 纯干货:通过WourdCount程序示例:详细讲解MapReduce之Block+Split+Shuffle+Map+Reduce的区别及数据处理流程. Shuffle过程是MapReduce的核心,集中了MR过程最关键的部分.要想了解MR,Shuffle是必须要理解的.了解Shuffle的过程,更有利于我们在对MapReduce job性能调优的工作有帮助,以及进一步加深我们对MR内

生动有趣地讲解Map/Reduce基本原理

Hadoop简介 Hadoop就是一个实现了Google云计算系统的开源系统,包括并行计算模型Map/Reduce,分布式文件系统HDFS,以及分布式数据库Hbase,同时Hadoop的相关项目也很丰富,包括ZooKeeper,Pig,Chukwa,Hive,Hbase,Mahout,flume等. 这里详细分解这里面的概念让大家通过这篇文章了解到底是什么hadoop: 1.什么是Map/Reduce,看下面的各种解释: (1)MapReduce是hadoop的核心组件之一,hadoop要分布式

Hive 的 map join

学习自 http://blog.csdn.net/xqy1522/article/details/6699740 1. Map Join 的使用场景: 关联操作中有一张表非常小 不等值的链接操作 2. 语法: 使用 hint 的方式指定join时使用mapjoin. select /*+ mapjoin(c)*/ -- hint c.tag,b.yemaozi_pre from (select row_number() over(partition by 1 order by yemaozi_p

Hadoop简介(1):什么是Map/Reduce

看这篇文章请出去跑两圈,然后泡一壶茶,边喝茶,边看,看完你就对hadoop整体有所了解了. Hadoop简介 Hadoop就是一个实现了Google云计算系统的开源系统,包括并行计算模型Map/Reduce,分布式文件系统HDFS,以及分布式数据库Hbase,同时Hadoop的相关项目也很丰富,包括ZooKeeper,Pig,Chukwa,Hive,Hbase,Mahout,flume等. 这里详细分解这里面的概念让大家通过这篇文章了解到底是什么hadoop: 1.什么是Map/Reduce,看

Hadoop的HDFS和Map/Reduce

HDFS HDFS是一个具有高度容错性的分布式文件系统,适合部署在廉价的机器上,它具有以下几个特点: 1)适合存储非常大的文件 2)适合流式数据读取,即适合"只写一次,读多次"的数据处理模式 3)适合部署在廉价的机器上 但HDFS不适合以下场景(任何东西都要分两面看,只有适合自己业务的技术才是真正的好技术): 1)不适合存储大量的小文件,因为受Namenode内存大小限制 2)不适合实时数据读取,高吞吐量和实时性是相悖的,HDFS选择前者 3)不适合需要经常修改数据的场景 HDFS的架

ng机器学习视频笔记(十五) ——大数据机器学习(随机梯度下降与map reduce)

ng机器学习视频笔记(十五) --大数据机器学习(随机梯度下降与map reduce) (转载请附上本文链接--linhxx) 一.概述 1.存在问题 当样本集非常大的时候,例如m=1亿,此时如果使用原来的梯度下降算法(也成为批量梯度下降算法(batch gradient descent),下同),则速度会非常慢,因为其每次遍历整个数据集,才完成1次的梯度下降的优化.即计算机执行1亿次的计算,仅仅完成1次的优化,因此速度非常慢. 2.数据量考虑 在使用全量数据,而不是摘取一部分数据来做机器学习,

Map Reduce和流处理

欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由@从流域到海域翻译,发表于腾讯云+社区 map()和reduce()是在集群式设备上用来做大规模数据处理的方法,用户定义一个特定的映射,函数将使用该映射对一系列键值对进行处理,直接产生出一系列键值对. Map Reduce和流处理 Hadoop的Map / Reduce模型在并行处理大量数据方面非常出色.它提供了一个通用的分区机制(基于数据的关键)来分配不同机器上的聚合式工作负载.基本上, map / reduce的算法设计都是关

Spark streaming storm map reduce区别与联系

1.1  基本概念 Storm是一个流式计算框架,Storm采用Java和Clojure编写,其优点是全内存计算,所以它的定位是分布式实时计算. Spark是一个基于内存计算的开源集群计算系统,目的是更快速的进行数据分析.Spark类似于Hadoop MapReduce的通用并行计算框架,Spark基于Map Reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点,但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spa