关于tensorflow 的数据读取线程管理QueueRunner

TensorFlow的Session对象是可以支持多线程的,因此多个线程可以很方便地使用同一个会话(Session)并且并行地执行操作。然而,在Python程序实现这样的并行运算却并不容易。所有线程都必须能被同步终止,异常必须能被正确捕获并报告,回话终止的时候, 队列必须能被正确地关闭。

所幸TensorFlow提供了两个类来帮助多线程的实现:tf.Coordinator和 tf.QueueRunner。从设计上这两个类必须被一起使用。Coordinator类可以用来同时停止多个工作线程并且向那个在等待所有工作线程终止的程序报告异常。QueueRunner类用来协调多个工作线程同时将多个张量推入同一个队列中

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

以上为极客中国上tensorflow的官方文档翻译中,对于线程和队列的介绍。但是可能说的不太清楚。

Coordinator还比较好理解,可以理解为信号量之类的东西。QueueRunner比较难理解,通篇看介绍文档,都没有找到QueueRunner这个代码,后来终于发现一段文字:

创建线程并使用QueueRunner对象来预取

简单来说:使用上面列出的许多tf.train函数添加QueueRunner到你的数据流图中。在你运行任何训练步骤之前,需要调用tf.train.start_queue_runners函数,否则数据流图将一直挂起。tf.train.start_queue_runners 这个函数将会启动输入管道的线程,填充样本到队列中,以便出队操作可以从队列中拿到样本。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

也就是说,QueueRunner是一个不存在于代码中的东西,而是后台运作的一个概念。由tf.train函数添加。

首先,我们先创建数据流图,这个数据流图由一些流水线的阶段组成,阶段间用队列连接在一起。第一阶段将生成文件名,我们读取这些文件名并且把他们排到文件名队列中。第二阶段从文件中读取数据(使用Reader),产生样本,而且把样本放在一个样本队列中。根据你的设置,实际上也可以拷贝第二阶段的样本,使得他们相互独立,这样就可以从多个文件中并行读取。在第二阶段的最后是一个排队操作,就是入队到队列中去,在下一阶段出队。因为我们是要开始运行这些入队操作的线程,所以我们的训练循环会使得样本队列中的样本不断地出队。

tf.train中要创建这些队列和执行入队操作,就要添加tf.train.QueueRunner到一个使用tf.train.add_queue_runner函数的数据流图中。每个QueueRunner负责一个阶段,处理那些需要在线程中运行的入队操作的列表。一旦数据流图构造成功,tf.train.start_queue_runners函数就会要求数据流图中每个QueueRunner去开始它的线程运行入队操作。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

代码中根本没有QueueRunner的啊

# Create the graph, etc.
init_op = tf.initialize_all_variables()

# Create a session for running operations in the Graph.
sess = tf.Session()

# Initialize the variables (like the epoch counter).
sess.run(init_op)

# Start input enqueue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)

try:
    while not coord.should_stop():
        # Run training steps or whatever
        sess.run(train_op)

except tf.errors.OutOfRangeError:
    print ‘Done training -- epoch limit reached‘
finally:
    # When done, ask the threads to stop.
    coord.request_stop()

# Wait for threads to finish.
coord.join(threads)
sess.close()
时间: 2024-11-02 04:41:42

关于tensorflow 的数据读取线程管理QueueRunner的相关文章

TensorFlow的数据读取机制

一.tensorflow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取的过程可以用下图来表示 假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需要把它们读取到内存中,然后提供给GPU或是CPU进行计算就可以了.这听起来很容易,但事实远没有那么简单.事实上,我们必须要把数据先读入后才能进行计算,假设读入用时0.1s,计算用时0.9s,那么就意味着每过1s,GPU都会有0.1s无事可做,这就大大降低了运算的效率. 如何解决这

『TensorFlow』数据读取类_data.Dataset

一.资料 参考原文: TensorFlow全新的数据读取方式:Dataset API入门教程 API接口简介: TensorFlow的数据集 二.背景 注意,在TensorFlow 1.3中,Dataset API是放在contrib包中的: tf.contrib.data.Dataset 而在TensorFlow 1.4中,Dataset API已经从contrib包中移除,变成了核心API的一员: tf.data.Dataset 此前,在TensorFlow中读取数据一般有两种方法: 使用p

TensorFlow的数据读取方法

Tensorflow一共提供了3种读取数据的方法:第一种方法个人感觉比较麻烦:在TensorFlow程序运行的每一步, 让Python代码来供给数据,比如说用PIL和numpy处理数据,然后输入给神经网络.第二种方法:从文件读取数据,在TensorFlow图的起始, 让一个输入管线从文件中读取数据:string_input_producer()和slice_input_producer(). 他们两者区别可以简单理解为:string_input_producer每次取出一个文件名.slice_i

TensorFlow中数据读取之tfrecords

关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据. 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练(tip:使用这种方法时,结合yield 使用更为简洁,大家自己

10 张图帮你搞定 TensorFlow 数据读取机制

导读 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下tensorflow的数据读取机制,文章的最后还会给出实战代码以供参考. 一.tensorflow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示: 假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg--我

十图详解TensorFlow数据读取机制(附代码)

http://geek.csdn.net/news/detail/201552 在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下TensorFlow的数据读取机制,文章的最后还会给出实战代码以供参考. TensorFlow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示: 假设我们的硬盘中有一

第一章线程管理

Java 7 并发编程实战手册目录 代码下载(https://github.com/Wang-Jun-Chao/java-concurrency) 第一章线程管理 1.1简介 在计算机领域中,我们说的并发(Concurrency)是指一系列任务的同时运行.如果一 台电脑有多个处理器或者有一个多核处理器,这个同时性(Simultaneity)是真正意义的并 发:但是一台电脑只有一个单核处理器,这个同时性并不是真正的并发 与并发相关的另一个概念是并行(Parallelism).与并发有不同的定义一样

iOS多线程开发(二)---线程管理

线程管理 线程管理包括创建,配置,退出三部分.主要包括创建线程的成本,线程创建,线程属性配置,线程主体入口函数编写,线程中断等 一,线程创建成本 1,为辅助线程分配的堆栈空间大小,便于系统和进程管理,以及为函数参数和局部变量分配空间 A,内核数据结构(kernel data structures)---大约1KB,This memory is used to store the thread data structures and attributes, much of which is all

Google Earth数据存储、管理、表现及开发机制

一.    Google Earth(Map)介绍 1.1    Google Earth介绍 在众多的地理信息服务提供商中,Google是较早提供服务的一个,其他有如ESRI这样的巨头,也有中国的灵图.但凭借着提供优质.高效.高性价比服务的理念和Google自身的巨大影响力,Google推出的Google Earth和Google Map平台已经成为全球影响力最大的互联网空间信息服务平台. Google Earth具有十分突出的三个特点[1],一是可以显示矢量数据地标,包括点.线.面等几何类型