UVA - 11178-Morley’s Theorem

就是给出一个等边三角形的三个顶点坐标

然后每个角的三等分线会交错成一个三角形,求出这个三角形的顶点坐标

一开始,我题意理解错了……还以为是任意三角形,所以代码能够处理任意三角形的情况

我的做法:

通过旋转点的位置得到这些三等分线的直线方程,然后用高斯消元求交点

我的代码:

#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
struct dot
{
	double x,y;
	dot(){}
	dot(double a,double b){x=a;y=b;}
	dot operator -(const dot &a){return dot(x-a.x,y-a.y);}
	dot operator +(const dot &a){return dot(x+a.x,y+a.y);}
	double mod(){return sqrt(pow(x,2)+pow(y,2));}
	double mul(const dot &a){return x*a.x+y*a.y;}
};
void gauss(double a[10][10])
{
	int i,j,k,t,n=2;
	for(i=0;i<n;i++)
	{
		t=i;
		for(j=i+1;j<n;j++)
			if(fabs(a[j][i])>fabs(a[t][i]))
				t=i;
		if(i!=t)
			for(j=i;j<=n;j++)
				swap(a[i][j],a[t][j]);
		if(a[i][i]!=0)
			for(j=i+1;j<n;j++)
				for(k=n;k>=i;k--)
					a[j][k]-=a[j][i]/a[i][i]*a[i][k];
	}
	for(i=n-1;i>-1;i--)
	{
		for(j=i+1;j<n;j++)
			a[i][n]-=a[i][j]*a[j][n];
		a[i][n]/=a[i][i];
	}
}
dot ro(dot a,dot b,double c)
{
	a=a-b;
	a=dot(a.x*cos(c)-a.y*sin(c),a.x*sin(c)+a.y*cos(c));
	return a+b;
}
int main()
{
	pair<dot,dot>t;
	dot a[3];
	double b,c[10][10];
	int n,i;
	cin>>n;
	while(n--)
	{
		for(i=0;i<3;i++)
			scanf("%lf%lf",&a[i].x,&a[i].y);

		t.first=a[0]-a[1];t.second=a[2]-a[1];
		b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
		t.first=a[1];t.second=ro(a[2],a[1],b);
		c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x;

		t.first=a[1]-a[2];t.second=a[0]-a[2];
		b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
		t.first=a[2];t.second=ro(a[0],a[2],b);
		c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x;

		gauss(c);

		printf("%.6lf %.6lf ",c[0][2],c[1][2]);

		t.first=a[1]-a[2];t.second=a[0]-a[2];
		b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
		t.first=a[2];t.second=ro(a[0],a[2],b);
		c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x;

		t.first=a[1]-a[0];t.second=a[2]-a[0];
		b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
		t.first=a[0];t.second=ro(a[1],a[0],b);
		c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x;

		gauss(c);

		printf("%.6lf %.6lf ",c[0][2],c[1][2]);

		t.first=a[1]-a[0];t.second=a[2]-a[0];
		b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
		t.first=a[0];t.second=ro(a[1],a[0],b);
		c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x;

		t.first=a[0]-a[1];t.second=a[2]-a[1];
		b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
		t.first=a[1];t.second=ro(a[2],a[1],b);
		c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x;

		gauss(c);

		printf("%.6lf %.6lf\n",c[0][2],c[1][2]);
	}
}

原题:

Problem D

Morley’s Theorem

Input: Standard Input

Output: Standard Output

Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral
triangle DEF.

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors
nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian
coordinates of D, E and F given the coordinates of A, B, and C.

Input

First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers
. This six integers actually indicates that the Cartesian coordinates of point A, B and C are
 respectively. You can assume that the area of triangle ABC is not equal to zero,
 and the points A, B and C are in counter clockwise order.

Output

For each line of input you should produce one line of output. This line contains six floating point numbers
 separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are
 respectively. Errors less than 
 will be accepted.

Sample Input   Output for Sample Input

2 
1 1 2 2 1 2 
0 0 100 0 50 50

1.316987 1.816987 1.183013 1.683013 1.366025 1.633975

56.698730 25.000000 43.301270 25.000000 50.000000 13.397460

                  

Problemsetters: Shahriar Manzoor

Special Thanks: Joachim Wulff

Source

Root :: Prominent Problemsetters :: Shahriar Manzoor

Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 4. Geometry :: Geometric Computations in 2D ::
Examples

时间: 2024-11-11 10:04:17

UVA - 11178-Morley’s Theorem的相关文章

UVA 11178 Morley&#39;s Theorem 计算几何

计算几何: 最基本的计算几何,差积  旋转 Morley's Theorem Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu Submit Status Description Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states that that the line

UVa 11178 Morley&#39;s Theorem (几何问题)

题意:给定三角形的三个点,让你求它每个角的三等分线所交的顶点. 析:根据自己的以前的数学知识,应该很容易想到思想,比如D点,就是应该求直线BD和CD的交点, 以前还得自己算,现在计算机帮你算,更方便,主要注意的是旋转是顺时针还是逆时针,不要搞错了. 要求BD和CD就得先求那个夹角ABC和ACD,然后三等分. 代码如下: #include <iostream> #include <cstdio> #include <cstring> #include <cmath&

UVA 11178 Morley&#39;s Theorem(旋转+直线交点)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打的. [代码] 1 #include<cstdio> 2 #include<cmath> 3 #include<cstring> 4 using namespace std; 5 6 7 struct Pt { 8 double x,y; 9 Pt(double x=0,d

UVA - 11178 - Morley&#39;s Theorem (计算几何~~)

UVA - 11178 Morley's Theorem Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu Submit Status Description Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states that that the lines trisecti

简单几何 UVA 11178 Morley&#39;s Theorem

题目传送门 题意:莫雷定理,求三个点的坐标 分析:训练指南P259,用到了求角度,向量旋转,求射线交点 /************************************************ * Author :Running_Time * Created Time :2015/10/21 星期三 15:56:27 * File Name :UVA_11178.cpp ************************************************/ #include

uva 11178 Morley&#39;s Theorem(计算几何-点和直线)

Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below

UVA 11178 Morley’s Theorem(莫雷定理 计算几何)

Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-s

uva 11178 Morley&amp;#39;s Theorem(计算几何-点和直线)

Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below

莫利定理:UVa 11178 Morley&#39;s Theorey

莫利定理(Morley's theorem),也称为莫雷角三分线定理.将三角形的三个内角三等分,靠近某边的两条三分角线相交得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形. 11178 - Morley's Theorem Time limit: 3.000 seconds 参考<算法竞赛入门经典--训练指南>第四章 计算几何 参考代码+部分注释 #include <iostream> #include <cstdio> #includ

11178 - Morley&#39;s Theorem【几何】

不涉及什么算法,只是简单的套用模板进行计算. 如果一个向量进行逆时针旋转,那么可以使用定义的函数 Rotate(v,rad)进行计算. 但是如果进行顺时针旋转,那么需要将rad改为-rad,也就是Rotate(v,-rad)进行计算. 精度的控制为 1e-10; 14112243 11178 Morley's Theorem Accepted C++ 0.055 2014-08-29 11:09:31 #include<cstdio> #include<cstring> #incl