python:深拷贝,浅拷贝,内存管理

深拷贝和浅拷贝都是对象的拷贝,本质的区别是拷贝出来的对象的地址是否和原对象一样,也就是地址的复制还是值的复制的区别。

可变对象:直接在对象所指的地址上把值改了,这个对象依然指向这个地址。

不可变对象:一个对象所指向的地址上的值是不能修改的,如果修改了这个对象的值,它所指向的地址就改变了。

深拷贝就是完全跟以前就没有任何关系了,原来的对象怎么改都不会影响当前对象

浅拷贝,原对象的list元素改变的话会改变当前对象,如果当前对象中list元素改变了,也同样会影响原对象。

内存管理机制

python的内存管理机制就是引用计数器机制和垃圾回收机制的混合机制

python内部使用引用计数,来保持追踪内存中的对象,Python内部记录了对象有多少个引用,即引用计数,当对象被创建时就创建了一个引用计数,当对象不再需要时,这个对象的引用计数为0时,它被垃圾回收。

总结一下对象会在一下情况下引用计数加1:

1.对象被创建:x=4

2.另外的别人被创建:y=x

3.被作为参数传递给函数:foo(x)

4.作为容器对象的一个元素:a=[1,x,‘33‘]

引用计数减少情况

1.一个本地引用离开了它的作用域。比如上面的foo(x)函数结束时,x指向的对象引用减1。

2.对象的别名被显式的销毁:del x ;或者del y

3.对象的一个别名被赋值给其他对象:x=789

4.对象从一个窗口对象中移除:myList.remove(x)

5.窗口对象本身被销毁:del myList,或者窗口对象本身离开了作用域。

垃圾回收

1、当内存中有不再使用的部分时,垃圾收集器就会把他们清理掉。它会去检查那些引用计数为0的对象,然后清除其在内存的空间。当然除了引用计数为0的会被清除,还有一种情况也会被垃圾收集器清掉:当两个对象相互引用时,他们本身其他的引用已经为0了。

2、垃圾回收机制还有一个循环垃圾回收器, 确保释放循环引用对象(a引用b, b引用a, 导致其引用计数永远不为0)。

在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一级的内存池机制。这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,这将严重影响Python的执行效率。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。

内存池机制

Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。

Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的 malloc。另外Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。

原文地址:https://www.cnblogs.com/xiao-longxia/p/12607870.html

时间: 2024-10-06 19:58:27

python:深拷贝,浅拷贝,内存管理的相关文章

Python中的内存管理机制

Python是如何进行内存管理的 python引用了一个内存池(memory pool)机制,即pymalloc机制,用于管理对小块内存的申请和释放 1.介绍 python和其他高级语言一样,会进行自动的内存管理.它使用引用计数机制检测为对象分配的内存是否可以被释放.然后,在Python中内存永远不会返还给操作系统,Python会持有这些内存并在需要时重新使用它们.在很多场景下,这个特性可以减少内存申请和释放所带来的性能损耗:但对于需要长时间运行的Python进程来讲,Python将会占用大量的

014 Python变量的内存管理

Python变量内存管理 1.变量存在哪里 1.如果我们定义了一个变量,而我们没有用python解释器取运行的时候,这个变量其实就是很普通的几个字符而已.而当我们用Python解释器取运行它的时候,那字符进入了内存,才会有变量这个概念.也就是说变量是存放在内存当中的. 2.但是说变量只是存在内存中并没有很具体,实际上在每定义一个变量就会在这个内存的大空间中开辟一个小空间 2.引用计数 1.引用计数是针对变量值的 2.比如定义一个变量 height = 180 x = height # x是在引用

python深拷贝浅拷贝

Python中,对象的赋值,拷贝(深/浅拷贝)之间是有差异的,如果使用的时候不注意,就可能产生意外的结果. 下面本文就通过简单的例子介绍一下这些概念之间的差别. 对象赋值 直接看一段代码: 按 Ctrl+C 复制代码 will = ["Will", 28, ["Python", "C#", "JavaScript"]]wilber = willprint id(will)print willprint [id(ele) for

[Python之路] 内存管理&垃圾回收

一.python源码 1.准备源码 下载Python源码:https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz 解压得到文件夹: 我们主要关注Include中的".h"文件以及Objects目录中的".c"文件. 我们从Include和Objects中的文件类型就可以看出Python解释器是C语言编写的. 2.object.h 在Include文件夹中,全部都是".h"文件. 这些C语言

[转载] python的内存管理机制

本文为转载,原作为http://www.cnblogs.com/CBDoctor/p/3781078.html,请大家支持原作者 先从较浅的层面来说,Python的内存管理机制可以从三个方面来讲 (1)垃圾回收 (2)引用计数 (3)内存池机制 一.垃圾回收: python不像C++,Java等语言一样,他们可以不用事先声明变量类型而直接对变量进行赋值.对Python语言来讲,对象的类型和内存都是在运行时确定的.这也是为什么我们称Python语言为动态类型的原因(这里我们把动态类型可以简单的归结

python的内存管理机制

先从较浅的层面来说,Python的内存管理机制可以从三个方面来讲 (1)垃圾回收 (2)引用计数 (3)内存池机制 一.垃圾回收: python不像C++,Java等语言一样,他们可以不用事先声明变量类型而直接对变量进行赋值.对Python语言来讲,对象的类型和内存都是在运行时确定的.这也是为什么我们称Python语言为动态类型的原因(这里我们把动态类型可以简单的归结为对变量内存地址的分配是在运行时自动判断变量类型并对变量进行赋值). 二.引用计数: Python采用了类似Windows内核对象

python 内存管理

python的内存管理机制 先从较浅的层面来说,Python的内存管理机制可以从三个方面来讲 (1)垃圾回收 (2)引用计数 (3)内存池机制 一.垃圾回收: python不像C++,Java等语言一样,他们可以不用事先声明变量类型而直接对变量进行赋值.对Python语言来讲,对象的类型和内存都是在运行时确定的.这也是为什么我们称Python语言为动态类型的原因(这里我们把动态类型可以简单的归结为对变量内存地址的分配是在运行时自动判断变量类型并对变量进行赋值). 二.引用计数: Python采用

python的内存管理机制(zz)

本文转载自:http://www.cnblogs.com/CBDoctor/p/3781078.html 先从较浅的层面来说,Python的内存管理机制可以从三个方面来讲 (1)垃圾回收 (2)引用计数 (3)内存池机制 一.垃圾回收: python不像C++,Java等语言一样,他们可以不用事先声明变量类型而直接对变量进行赋值.对Python语言来讲,对象的类型和内存都是在运行时确定的.这也是为什么我们称Python语言为动态类型的原因(这里我们把动态类型可以简单的归结为对变量内存地址的分配是

《python源码剖析》笔记 pythonm内存管理机制

本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie 1.内存管理架构 Python的内存管理机制都有两套实现:debug模式和release模式 Python内存管理机制的层次结构: 图16-1 第0层是操作系统提供的内存管理接口,如malloc.free 第1层是Python基于第0层操作系统的内存管理接口包装而成的,主要是为了处理与平台相关的内存分配行为. 实现是一组以PyMem_为前缀的函数族 两套接口:函数和宏. 宏,可以避免函数调

Python内存管理机制

1 概述 对于Python这样的动态语言,如何高效的管理内存,是很重要的一部分,在很大程度上决定了Python的执行效率.与大多数编程语言不同,Python中的变量无需事先申明,变量无需指定类型,程序员无需关心内存管理,Python解释器给你自动回收.我们知道在变量分配内存时,是借用系统资源,在使用完成后,应该归还所借用的系统资源,Python承担了这个复杂的内存管理工作,从而让程序员更加的关注程序的编写质量上. 在执行过程中,Python会频繁的创建和销毁大量的对象,这些都涉及到内存的管理.以