\(F(n) = F(n-1)+F(n-2)\),其中 \(F(0)=0, F(1)=1\),即该数列由 0 和 1 开始,之后的数字由相邻的前两项相加而得出。
递归
def fibonacci(n):
assert n >= 0, 'invalid n'
if n < 2: return n
return fibonacci(n - 1) + fibonacci(n -2)
递归方法的时间复杂度为高度为 \(n-1\) 的不完全二叉树的节点数,所以近似为 \(O(2^n)\)
数学求解方法:
\(T(n) = T(n-1) + T(n-2) \qquad (n>1)\)
设 \(f(n)\) 为参数为 n 时的时间复杂度 \(f(n) = f(n-1) + f(n-2)\)
转化为求二阶常系数齐次差分方程,设通解为 \(f_{n} = C_{1}f_{n-1} + C_{2}f_{n-2}\)
设有特解 \(f_{n} = \lambda\),\(\lambda\) 为非零待定常数,将 \(\lambda\) 代入方程,易得特征方程 \(\lambda ^{2} = \lambda + 1\),则 \(λ = \frac{1\pm \sqrt{5}}{2}\)
再根据 \(f(0) = 0, f(1) = 1.\) 求出 \(C_{1}\) 和 \(C_{2}\)
得出通项公式
\[
f(n) = \frac{1}{\sqrt{5}}[(\frac{1+ \sqrt{5}}{2})^{n} - (\frac{1- \sqrt{5}}{2})^{n}]
\]
当 \(n->\infty\) 时, \(\left |(\frac{1- \sqrt{5}}{2})^{n} \right |<1\),所以趋于零。
时间复杂度为 \(O((\frac{1+ \sqrt{5}}{2})^{n})\) ,约等于 \(O(1.618^{n})\) ,即指数级复杂度 \(O(2^n)\),递归算法空间复杂度取决于递归的深度,显然为 \(O(n)\)。
迭代
def fibonacci(n):
assert n >= 0, 'invalid n'
if n == 0: return 0
a, b = 0, 1
for _ in range(n - 1):
a, b = b, a+b
return b
时间复杂度 \(O(n)\),空间复杂度 \(O(1)\)
矩阵
\(F(n)\) 和 \(F(n - 1)\) 写成一个 2 x 1 的矩阵,然后对其进行变形。
\(\begin{bmatrix}F_{n}\\F_{n-1}\end{bmatrix}=\begin{bmatrix}F_{n-1}+F_{n-2}\\F_{n-1}\end{bmatrix}=\begin{bmatrix}1\times F_{n-1}+1\times F_{n-2}\\1\times F_{n-1}+0\times F_{n-2}\end{bmatrix}=\begin{bmatrix}1 & 1\\ 1 & 0\end{bmatrix}\times\begin{bmatrix}F_{n-1}\\F_{n-2}\end{bmatrix}=...=\begin{bmatrix}1&1\\1&0\end{bmatrix}^{n-1}\times\begin{bmatrix}F_{1}\\F_{0}\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}^{n-1}\times\begin{bmatrix}1\\0\end{bmatrix}\)
因此要求 \(F_{n}\),只要对这个二阶方阵求 \(n - 1\) 次方,最后取结果方阵第一行第一列的数字就可以了。
等式中的矩阵 \(\begin{bmatrix}1&1\\1&0\end{bmatrix}\) 被称为斐波那契数列的 Q- 矩阵。
通过 Q- 矩阵,我们可以利用如下公式进行计算:
\(F_{n} = Q^{n-1}_{1,1}\)
如此一来,计算斐波那契数列的问题就转化为了求 \(Q^{n-1}\) 的问题。
\[
A^{n} = \begin{cases} A\cdot (A^{2})^{\frac{n-1}{2}}, & \text{if $n$ is odd} \\\ (A^{2})^{\frac{n}{2}}, & \text{if $n$ is even} \\ \end{cases}
\]
可见时间复杂度满足 \(T(n) = T(n / 2) + O(1)\)
由 Master 定理 可得
时间复杂度 \(O( \log n)\) ,空间复杂度显然为 \(O(1)\)
from numpy import matrix
def MatrixPower(mat, n):
assert n > 0, 'invalid n'
res = None
temp = mat
while True:
if n & 1:
if res is None: res = temp
else: res = res * temp
n >>= 1
if n == 0: break
temp = temp * temp
return res
def fibonacci(n):
assert n >= 0, 'invalid n'
if n < 2: return n # F(0) = 0, F(1) = 1
mat = matrix([[1, 1], [1, 0]], dtype=object)
mat = MatrixPower(mat, n - 1)
return mat[0, 0]
通项公式法
def fibonacci(n):
root_Five = 5**0.5
result = (((1 + root_Five) / 2)**n - ((1 - root_Five) / 2)**n) / root_Five
return int(result)
显然,该方法的时空复杂度均为 \(O(1)\) , 但使用公式计算的方法由于有大量的浮点运算,在 n 增大时浮点误差不断增大会导致返回结果不正确甚至数据溢出。
方法 | 时间复杂度 | 空间复杂度 |
---|---|---|
递归 | \(O(2^{n})\) | \(O(n)\) |
迭代 | \(O(n)\) | \(O(1)\) |
矩阵 | \(O(log^{n})\) | \(O(1)\) |
公式 | \(O(1)\) | \(O(1)\) |
原文地址:https://www.cnblogs.com/yexuesong/p/12321448.html