互联网架构“高并发”

原文地址:https://cloud.tencent.com/developer/article/1048632

一、什么是高并发

高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。

高并发相关常用的一些指标有响应时间(Response Time),吞吐量(Throughput),每秒查询率QPS(Query Per Second),并发用户数等。

响应时间:系统对请求做出响应的时间。例如系统处理一个HTTP请求需要200ms,这个200ms就是系统的响应时间。

吞吐量:单位时间内处理的请求数量。

QPS:每秒响应请求数。在互联网领域,这个指标和吞吐量区分的没有这么明显。

并发用户数:同时承载正常使用系统功能的用户数量。例如一个即时通讯系统,同时在线量一定程度上代表了系统的并发用户数。

二、如何提升系统的并发能力

互联网分布式架构设计,提高系统并发能力的方式,方法论上主要有两种:垂直扩展(Scale Up)与水平扩展(Scale Out)。

垂直扩展:提升单机处理能力。垂直扩展的方式又有两种:

(1)增强单机硬件性能,例如:增加CPU核数如32核,升级更好的网卡如万兆,升级更好的硬盘如SSD,扩充硬盘容量如2T,扩充系统内存如128G;

(2)提升单机架构性能,例如:使用Cache来减少IO次数,使用异步来增加单服务吞吐量,使用无锁数据结构来减少响应时间;

在互联网业务发展非常迅猛的早期,如果预算不是问题,强烈建议使用“增强单机硬件性能”的方式提升系统并发能力,因为这个阶段,公司的战略往往是发展业务抢时间,而“增强单机硬件性能”往往是最快的方法。

不管是提升单机硬件性能,还是提升单机架构性能,都有一个致命的不足:单机性能总是有极限的。所以互联网分布式架构设计高并发终极解决方案还是水平扩展。

水平扩展:只要增加服务器数量,就能线性扩充系统性能。水平扩展对系统架构设计是有要求的,如何在架构各层进行可水平扩展的设计,以及互联网公司架构各层常见的水平扩展实践,是本文重点讨论的内容。

三、常见的互联网分层架构

常见互联网分布式架构如上,分为:

(1)客户端层:典型调用方是浏览器browser或者手机应用APP

(2)反向代理层:系统入口,反向代理

(3)站点应用层:实现核心应用逻辑,返回html或者json

(4)服务层:如果实现了服务化,就有这一层

(5)数据-缓存层:缓存加速访问存储

(6)数据-数据库层:数据库固化数据存储

整个系统各层次的水平扩展,又分别是如何实施的呢?

四、分层水平扩展架构实践

反向代理层的水平扩展

反向代理层的水平扩展,是通过“DNS轮询”实现的:dns-server对于一个域名配置了多个解析ip,每次DNS解析请求来访问dns-server,会轮询返回这些ip。

当nginx成为瓶颈的时候,只要增加服务器数量,新增nginx服务的部署,增加一个外网ip,就能扩展反向代理层的性能,做到理论上的无限高并发。

站点层的水平扩展

站点层的水平扩展,是通过“nginx”实现的。通过修改nginx.conf,可以设置多个web后端。

当web后端成为瓶颈的时候,只要增加服务器数量,新增web服务的部署,在nginx配置中配置上新的web后端,就能扩展站点层的性能,做到理论上的无限高并发。

服务层的水平扩展

服务层的水平扩展,是通过“服务连接池”实现的。

站点层通过RPC-client调用下游的服务层RPC-server时,RPC-client中的连接池会建立与下游服务多个连接,当服务成为瓶颈的时候,只要增加服务器数量,新增服务部署,在RPC-client处建立新的下游服务连接,就能扩展服务层性能,做到理论上的无限高并发。如果需要优雅的进行服务层自动扩容,这里可能需要配置中心里服务自动发现功能的支持。

数据层的水平扩展

在数据量很大的情况下,数据层(缓存,数据库)涉及数据的水平扩展,将原本存储在一台服务器上的数据(缓存,数据库)水平拆分到不同服务器上去,以达到扩充系统性能的目的。

互联网数据层常见的水平拆分方式有这么几种,以数据库为例:

按照范围水平拆分

每一个数据服务,存储一定范围的数据,上图为例:

user0库,存储uid范围1-1kw

user1库,存储uid范围1kw-2kw

这个方案的好处是:

(1)规则简单,service只需判断一下uid范围就能路由到对应的存储服务;

(2)数据均衡性较好;

(3)比较容易扩展,可以随时加一个uid[2kw,3kw]的数据服务;

不足是:

(1) 请求的负载不一定均衡,一般来说,新注册的用户会比老用户更活跃,大range的服务请求压力会更大;

按照哈希水平拆分

每一个数据库,存储某个key值hash后的部分数据,上图为例:

user0库,存储偶数uid数据

user1库,存储奇数uid数据

这个方案的好处是:

(1)规则简单,service只需对uid进行hash能路由到对应的存储服务;

(2)数据均衡性较好;

(3)请求均匀性较好;

不足是:

(1)不容易扩展,扩展一个数据服务,hash方法改变时候,可能需要进行数据迁移;

这里需要注意的是,通过水平拆分来扩充系统性能,与主从同步读写分离来扩充数据库性能的方式有本质的不同。

通过水平拆分扩展数据库性能:

(1)每个服务器上存储的数据量是总量的1/n,所以单机的性能也会有提升;

(2)n个服务器上的数据没有交集,那个服务器上数据的并集是数据的全集;

(3)数据水平拆分到了n个服务器上,理论上读性能扩充了n倍,写性能也扩充了n倍(其实远不止n倍,因为单机的数据量变为了原来的1/n);

通过主从同步读写分离扩展数据库性能:

(1)每个服务器上存储的数据量是和总量相同;

(2)n个服务器上的数据都一样,都是全集;

(3)理论上读性能扩充了n倍,写仍然是单点,写性能不变;

缓存层的水平拆分和数据库层的水平拆分类似,也是以范围拆分和哈希拆分的方式居多,就不再展开。

五、总结

高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。

提高系统并发能力的方式,方法论上主要有两种:垂直扩展(Scale Up)与水平扩展(Scale Out)。前者垂直扩展可以通过提升单机硬件性能,或者提升单机架构性能,来提高并发性,但单机性能总是有极限的,互联网分布式架构设计高并发终极解决方案还是后者:水平扩展。

互联网分层架构中,各层次水平扩展的实践又有所不同:

(1)反向代理层可以通过“DNS轮询”的方式来进行水平扩展;

(2)站点层可以通过nginx来进行水平扩展;

(3)服务层可以通过服务连接池来进行水平扩展;

(4)数据库可以按照数据范围,或者数据哈希的方式来进行水平扩展;

各层实施水平扩展后,能够通过增加服务器数量的方式来提升系统的性能,做到理论上的性能无限。

末了,希望文章的思路是清晰的,希望大家对高并发的概念和实践有个系统的认识,结合上一篇《究竟啥才是互联网架构“高可用”》的分享互联网分布式架构是不是逐步的不再神秘啦?

本文分享自微信公众号 - 架构师之路(road5858),作者:58沈剑

原文出处及转载信息见文内详细说明,如有侵权,请联系 [email protected] 删除。

原始发表时间:2017-01-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

原文地址:https://www.cnblogs.com/boonya/p/12663797.html

时间: 2024-11-05 18:50:15

互联网架构“高并发”的相关文章

Java大型互联网-构建高并发和高可用的电商平台架构实践原理

并发,在操作系统中,是指一个时间段中有几个程序都处于已启动运行到运行完毕之间,且这几个程序都是在同一个处理机上运行,但任一个时刻点上只有一个程序在处理机上运行. "高可用性"(High Availability)通常来描述一个系统经过专门的设计,从而减少停工时间,而保持其服务的高度可用性. 一. 设计理念 1. 空间换时间 多级缓存,静态化 客户端页面缓存(http header中包含Expires/Cache of Control,last modified(304,server不返

系统架构~高并发日志系统设计

对于一个项目来说,日志是必须的,一般日志的持久化方式有文件和数据库,而在多数情况下,我们都采用文件系统来实现,而对于高并发的情况下,频繁进行I/O操作,对系统的性能肯定是有影响的,这个毋庸置疑!针对这种高并发的场合,我们采用一种缓存队列的方式来处理这个Case是比较明智的,本文主要是向各位展现一下,我所设计的<高并发日志系统设计>,如在功能上有什么需要改进的地方,欢迎各位来回复. 一 项目结构图 二 项目实现代码 /// <summary> /// 工作任务基类 /// </

JAVA开发之大型互联网企业高并发架构Tomcat服务器性能优化视频教程

课程目标熟练掌握高并发架构Tomcat服务器性能优化. 适用人群对计算机,java开发人员,Java架构师,运维感兴趣的朋友! 课程简介Tomcat是Apache软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache.Sun和其他一些公司及个人共同开发而成.Tomcat服务器是一个免费的开放源代码的Web应用服务器,属于轻量级应用服务器,在中小型系统和并发访问用户不是很多的场合下被普遍使用,是开发和调试JSP程序的首选. Tomc

互联网金融高并发方案

小微金融.场景金融等新兴银行金融业务亟需一种新型的弹性架构来应对高并发.大流量的业务冲击,同时,要满足应用快速版本迭代升级.敏捷运维管理等需求.本文分享了BoCloud博云如何利用互联网应用架构与Docker容器技术帮助银行业应对“互联网+”挑战,建设基于PaaS平台的敏捷IT架构. 移动互联网渠道创新是传统企业无法也不能躲避的业务变革,无论是接入或者自建互联网渠道都需要回答如下问题:现在的IT架构能否应对互联网渠道创新业务的爆炸性冲击?什么样的IT架构才能够解决这个问题并具备应对未来需求的良好

互联网架构多线程并发编程高级教程(上)

#基础篇幅:线程基础知识.并发安全性.JDK锁相关知识.线程间的通讯机制.JDK提供的原子类.并发容器.线程池相关知识点? #高级篇幅:ReentrantLock源码分析.对比两者源码,更加深入理解读写锁,JAVA内存模型.先行发生原则.指令重排序?#环境说明:idea.java8.maven #第一章 并发简介 ?? ?##01 课程简介 ?? ??? ?为什么要学习并发编程? ?? ??? ??? ?方便实际开发 ?? ??? ??? ??? ?面试 ?? ??? ??? ??? ?课程特点

互联网架构多线程并发编程高级教程(下)

基础篇幅:线程基础知识.并发安全性.JDK锁相关知识.线程间的通讯机制.JDK提供的原子类.并发容器.线程池相关知识点 高级篇幅:ReentrantLock源码分析.对比两者源码,更加深入理解读写锁,JAVA内存模型.先行发生原则.指令重排序 环境说明:    idea.java8.maven  第四章--锁 01 锁的分类 自旋锁: 线程状态及上下文切换消耗系统资源,当访问共享资源的时间短,频繁上下文切换不值得.jvm实现,使线程在没获得锁的时候,不被挂起,转而执行空循环,循环几次之后,如果还

15套java互联网架构师、高并发、集群、负载均衡、高可用、数据库设计、缓存、性能优化、大型分布式 项目实战视频教程

* { font-family: "Microsoft YaHei" !important } h1 { color: #FF0 } 15套java架构师.集群.高可用.高可扩 展.高性能.高并发.性能优化.Spring boot.Redis.ActiveMQ.Nginx.Mycat.Netty.Jvm大型分布 式项目实战视频教程 视频课程包含: 高级Java架构师包含:Spring boot.Spring  cloud.Dubbo.Redis.ActiveMQ.Nginx.Mycat

java架构师负载均衡、高并发、nginx优化、tomcat集群、异步性能优化、Dubbo分布式、Redis持久化、ActiveMQ中间件、Netty互联网、spring大型分布式项目实战视频教程百度网盘

15套Java架构师详情 * { font-family: "Microsoft YaHei" !important } h1 { background-color: #006; color: #FF0 } 15套java架构师.集群.高可用.高可扩展.高性能.高并发.性能优化.Spring boot.Redis.ActiveMQ.Nginx.Mycat.Netty.Jvm大型分布式项目实战视频教程 视频课程包含: 高级Java架构师包含:Spring boot.Spring  clo

从宜人贷系统架构看互联网高并发对金融系统架构的挑战

原文:http://www.p2pquan.com/article-740-1.html 一.简介 随着互联网金融的持续火热,越来越多的银行纷纷发布了各自的互联网金融产品.但是互联网产品“高并发.大数据量”的特点却对于银行传统的核心系统架构带来了新的挑战. 1.互联网的核心技术特征 当前互联网的核心技术特征主要可以概括为:分布式,易扩展,大量低端设备,底层开源软件.分布式结构可以通过平行扩展来支撑互联网上蜂拥而至的访问客户.同时,基于客户行为分析的大数据平台也需要分布式系统来完成,其中最典型的就