hdu1695 GCD 莫比乌斯反演做法+枚举除法的取值 (5,7),(7,5)看做同一对

/**
题目:hdu1695 GCD
链接:http://acm.hdu.edu.cn/status.php
题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) ,
满足 a ≤ x ≤ b , c ≤ y ≤ d ,且 gcd(x,y) = k ,(5,7),(7,5)看做同一对, gcd(x,y) 函数为 x 和 y 的最大公约数。
本题默认:a = c = 1;
 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000
思路:
首先容斥:ans = solve(b,d,k)-solve(b,c-1,k)-solve(a-1,d,k)+solve(a-1,c-1,k);

solve(n,m,k)表示x在[1,n],y在[1,m] gcd(x,y)==k的对数。

定义:
f(n)表示gcd(x,y)=n的数量。
F(n)表示gcd(x,y)是n的倍数的数量。

如何求F(n)?

F(n) = (x/n) * (y/n); 要加括号,因为这是取整之后的乘积

根据定义用第二种形式:f(n) = sigma(mu[d/n]*F(d)) (n|d)

这样只要枚举k的倍数一直到min(n,m)就可以了。可是如果k=1,那么枚举一次就是O(N);总复杂度为O(N*N);

实际上可以继续优化;

solve(n,m,k)等价于solve(n/k,m/k)表示x在[1,n/k],y在[1,m/k],gcd(x,y)==1的对数。

由于x/i,x/(i+1),x/(i+2)...x/(i+t)存在连续相同的结果,也就是这段区间[l,r]内(n/i)*(m/i)的结果是相同的;

这样i在[l,r] 范围内的(n/i)*(m/i)*mu[i];就等价于 (n/i)*(m/i)*(sum[r]-sum[l-1]); sum表示mu的前缀和。

所以这里可以快速处理。复杂度为sqrt(N); 总时间复杂度为N*sqrt(N);

参考:https://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html

*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <iostream>
#include <vector>
#include <map>
using namespace std;
typedef long long LL;
#define ms(x,y) memset(x,y,sizeof x)
typedef pair<int, int> P;
const LL INF = 1e10;
const int mod = 1e9 + 7;
const int maxn = 1e5 + 100;
int prime[maxn], tot, not_prime[maxn];
int mu[maxn], sum[maxn];
void init()
{
    mu[1] = 1;
    tot = 0;
    for(int i = 2; i < maxn; i++){
        if(!not_prime[i]){
            prime[++tot] = i;
            mu[i] = -1;
        }
        for(int j = 1; prime[j]*i<maxn; j++){
            not_prime[prime[j]*i] = 1;
            if(i%prime[j]==0){
                mu[prime[j]*i] = 0;
                break;
            }
            mu[prime[j]*i] = -mu[i];
        }
    }
    for(int i = 1; i < maxn; i++) sum[i] = sum[i-1]+mu[i];
}
LL solve(int n,int m)
{
    LL ans = 0;
    if(n>m) swap(n,m);
    int last;
    for(int i = 1; i <= n; i=last+1){
        last = min(n/(n/i),m/(m/i));
        ans += (LL)(sum[last]-sum[i-1])*(n/i)*(m/i);
    }
    return ans;
}
int main()
{
    //freopen("in.txt","r",stdin);
    int T;
    int a, b, c, d, k;
    int cas = 1;
    init();
    cin>>T;
    while(T--)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        if(k==0){
            printf("Case %d: 0\n",cas++);continue;
        }
        if(b>d) swap(b,d);
        ///solve(b/k,d/k)这一部分多计算了[1,b/k]与[1,b/k]之间互质的对数。
        printf("Case %d: %lld\n",cas++,solve(b/k,d/k)-solve(b/k,b/k)/2);
    }
    return 0;
}
时间: 2024-10-23 14:48:09

hdu1695 GCD 莫比乌斯反演做法+枚举除法的取值 (5,7),(7,5)看做同一对的相关文章

hdu-1695 GCD(莫比乌斯反演)

题目链接: GCD Time Limit: 6000/3000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor

hdu1695(莫比乌斯反演)

传送门:GCD 题意:求[1,n],[1,m]gcd为k的对数. 分析:莫比乌斯入反演门题,gcd(x,y)==k等价于gcd(x/k,y/k)==1,求出[1,n][1,m]互质的对数,在减去[1,2][2,1]之类重复的个数即答案. 莫比乌斯反演:46ms #pragma comment(linker,"/STACK:1024000000,1024000000") #include <cstdio> #include <cstring> #include &

BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2534  Solved: 1129 [Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint 对于样例(2,2),(2,4),(3,3),(4,2)

BZOJ2818: Gcd 莫比乌斯反演

分析:筛素数,然后枚举,莫比乌斯反演,然后关键就是分块加速(分块加速在上一篇文章) #include<cstdio> #include<cstring> #include<queue> #include<cstdlib> #include<algorithm> #include<vector> #include<cmath> using namespace std; typedef long long LL; const

【BZOJ2818】Gcd [莫比乌斯反演]

Gcd Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT 1<=N<=10^7 Source 直接莫比乌斯反演即可. 然后对于这个式子,我们下界分块一下即可. Code 1 #i

bzoj 2820 luogu 2257 yy的gcd (莫比乌斯反演)

题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便表述,由于n和m等价,以下内容均默认n<=m 题目让我们求:$\sum_{k=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$ 容易变形为:$\sum_{k=1}^{n}\sum_{i=1}^{\left \lfloor \frac{n}{k} \righ

BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discuss] Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,每行两个正

BZOJ2820 YY的GCD 莫比乌斯反演

题意:求x∈[1,N],y∈[1,M]中gcd(x,y)为质数的数对的数量. 题解: 这个题把BZOJ2301中的k改成枚举素数就能过啦……才怪,不过和那个题的思路类似,但我们不枚举每一个质数,而是直接枚举质数p的倍数T,得到\[{f_{A,B,p}} = \sum\limits_{p|T} {[{F_{A,B,T}}\sum\limits_{p|T} {\mu (\frac{T}{p})} ]} \]其中F,f的定义与2301中的相同,而分块的时候求和需要预处理出来后面那个和式,稍微修改一下线

luogu2658 GCD(莫比乌斯反演/欧拉函数)

link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD粘过来就行 代码太丑,没开O2 TLE5个点 #include <cstdio> #include <functional> using namespace std; const int fuck = 10000000; int prime[10000010], tot; bool v