批量梯度下降法(Batch Gradient Descent)

批量梯度下降:在梯度下降的每一步中都用到了所有的训练样本。

思想:找能使代价函数减小最大的下降方向(梯度方向)。

    ΔΘ = - α▽J      α:学习速率

梯度下降的线性回归

  线性模型的代价函数:

    

  对于更新项,为什么是 - α▽J :

  Θ如果在极值点右边,偏导大于0,则Θ要减去偏导的值(Θ偏大,减去一个正值)

  Θ如果在极值点左边,偏导小于0,则Θ要减去偏导的值(Θ偏小,减去一个负值)

  实现方法:同步更新每个Θ

  特点:梯度下降法即使α取很大也可以收敛到局部最小值。

     随着算法的进行,越接近最小值点偏导的那一项越小,Θ的变化量也就越小。

  图中可以看出,初始Θ取粉色点所在的值,随着算法的进行步长越来越小。

时间: 2024-10-04 00:03:08

批量梯度下降法(Batch Gradient Descent)的相关文章

flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )

1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最能反映这些样本数据之间的规律呢? 为了解决这个问题,我们需要引入误差分析预测值与真实值之间的误差为最小. 2.梯度下降算法 梯度下降的场景: 梯度下降法的基本思想可以类比为一个下山的过程.假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷). 但此时山上的浓雾很

随机梯度下降(stochastic gradient descent),批梯度下降(batch gradient descent),正规方程组(The normal equations)

对于一个线性回归问题有 为了使得预测值h更加接近实际值y,定义 J越小,预测更加可信,可以通过对梯度的迭代来逼近极值 批梯度下降(batch gradient descent)(the entire training set before taking a single step) 随机梯度下降(stochastic gradient descent)(gets θ "close" to the minimum much faster than batch gradient desce

梯度下降(Gradient Descent)

在求解机器学习算法的优化问题时,梯度下降是经常采用的方法之一. 梯度下降不一定能够找到全局最优解,有可能是一个局部最优解.但如果损失函数是凸函数,梯度下降法得到的一定是全局最优解. 梯度下降的相关概念: 1.步长或学习率(learning rate):步长和学习率是一个东西,只是在不同的地方叫法不一样,以下叫做步长.步长决定了在梯度下降过程中,每一步沿梯度负方向前进的长度. 2.假设函数(hypothesis function):也就是我们的模型学习到的函数,记为. 3.损失函数(loss fu

梯度下降法、随机梯度下降法、小批量梯度下降法

本文以二维线性拟合为例,介绍批量梯度下降法.随机梯度下降法.小批量梯度下降法三种方法,求解拟合的线性模型参数. 需要拟合的数据集是 $(X_1, y_1), (X_2, y_2)..., (X_n, y_n)$,其中$X^i=(x_1^i, x_2^i)$,表示2个特征,$y^j$是对应的回归值. 拟合得到的函数是 $h_{\theta_1, \theta_2}(X)$,尽可能使${h_{{\theta _1},{\theta _2}}}(X) \approx y$. 损失函数是$J(\thet

【ML-3】梯度下降(Gradient Descent)小结

目录 简述 梯度下降与梯度上升 梯度下降法算法详解 梯度下降法大家族(BGD,SGD,MBGD) 梯度下降法和其他无约束优化算法的比较 总结 ? ? 在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法(在[2]中已经讲解了).这里就对梯度下降法做一个完整的总结. 一.简述 在微积分里面,对多元函数的参数求?偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度. 比如函数f(x,y), 分别对x,

梯度下降(Gradient Descent)小结

在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微积分里面,对多元函数的参数求?偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度.比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(?f/?x, ?f/?y)T,简称grad f(x,y)或者▽f(x,y).对于在点(x0,y0)的具体梯度向量就是(?f/?x0, ?f/?

梯度下降(Gradient Descent)相关概念

梯度,直观理解: 梯度: 运算的对像是纯量,运算出来的结果会是向量在一个标量场中, 梯度的计算结果会是"在每个位置都算出一个向量,而这个向量的方向会是在任何一点上从其周围(极接近的周围,学过微积分该知道甚么叫极限吧?)标量值最小处指向周围标量值最大处.而这个向量的大小会是上面所说的那个最小与最大的差距程度" 举例子来讲会比较简单,如果现在的纯量场用一座山来表示,纯量值越大的地方越高,反之则越低.经过梯度这个运操作数的运算以后,会在这座山的每一个点上都算出一个向量,这个向量会指向每个点最

随机梯度下降 Stochastic gradient descent

梯度下降法先随机给出参数的一组值,然后更新参数,使每次更新后的结构都能够让损失函数变小,最终达到最小即可. 在梯度下降法中,目标函数其实可以看做是参数的函数,因为给出了样本输入和输出值后,目标函数就只剩下参数部分了,这时可以把参数看做是自变量,则目标函数变成参数的函数了. 梯度下降每次都是更新每个参数,且每个参数更新的形式是一样的,即用前一次该参数的值减掉学习率和目标函数对该参数的偏导数(如果只有1个参数的话,就是导数) 为什么要这样做呢? 通过取不同点处的参数可以看出,这样做恰好可以使原来的目

梯度下降算法(Gradient Descent)

最近在搞论文,需要用梯度下降算法求解,所以重新整理分享在这里.主要包括梯度介绍.公式求导.学习速率选择.代码实现. 梯度下降的性质: 1.求得的解和选取的初始点有关 2.可以保证找到局部最优解,因为梯度最终会减小为0,即步长会自动越来越小. 梯度简介 一个多元函数的在某点的梯度方向是函数值在该点增长最快的方向,即方向导数取最大值的方向. 问题描述公式求导学习率选择 假设要学习这么一个函数: 那么损失函数可以定义成: 像这种优化问题有很多方法,那咱们先直接求导吧,对于求导过程,好多还是不理解,可以