机器学习-牛顿方法&指数分布族&GLM

本节内容

  • 牛顿方法
  • 指数分布族
  • 广义线性模型

之前学习了梯度下降方法,关于梯度下降(gradient descent),这里简单的回顾下【参考感知机学习部分提到的梯度下降(gradient descent)】。在最小化损失函数时,采用的就是梯度下降的方法逐步逼近最优解,规则为其实梯度下降属于一种优化方法,但梯度下降找到的是局部最优解。如下图:

本节首先讲解的是牛顿方法(NewTon’s Method)。牛顿方法也是一种优化方法,它考虑的是全局最优。接着还会讲到指数分布族和广义线性模型。下面来详细介绍。

1.牛顿方法

现在介绍另一种最小化损失函数?(θ)的方法——牛顿方法,参考Approximations Of Roots Of Functions – Newton’s Method

。它与梯度下降不同,其基本思想如下:

假设一个函数我们需要求解此时的x值。如下图所示:

图1 f(x0)=0,a1,a2,a3...逐步接近x0

在a1点的时候,f(x)切线的目标函数由于(a2,0)在这条线上,所以我们有

同理,在a2点的时候,切线的目标函数由于(a3,0)在这条线上,所以我们有

假设在第n次迭代,有那么此时有下面这个递推公式:

其中n>=2。

最后得到的公式也就是牛顿方法的学习规则,为了和梯度下降对比,我们来替换一下变量,公式如下:

那么问题来了,怎么将牛顿方法应用到我们的问题上,最小化损失函数l(theta),(或者是求极大似然估计的极大值)呢?

对于机器学习问题,现在我们优化的目标函数为极大似然估计l,当极大似然估计函数取值最大时,其导数为 0,这样就和上面函数f取 0 的问题一致了,令极大似然函数的求解更新规则是:

对于l,当一阶导数为零时,有极值;此时,如果二阶导数大于零,则l有极小值,如果二阶导数小于零,则有极大值。

上面的式子是当参数θ为实数时的情况,下面我们要求出一般式。当参数为向量时,更新规则变为如下公式:

其中和之前梯度下降中提到的一样,是梯度,H是一个n*n矩阵,H是函数的二次导数矩阵,被成为Hessian矩阵。其某个元素Hij计算公式如下:

和梯度下降相比,牛顿方法的收敛速度更快,通常只要十几次或者更少就可以收敛,牛顿方法也被称为二次收敛(quadratic convergence),因为当迭代到距离收敛值比较近的时候,每次迭代都能使误差变为原来的平方。缺点是当参数向量较大的时候,每次迭代都需要计算一次 Hessian 矩阵的逆,比较耗时。

时间: 2024-08-27 22:47:05

机器学习-牛顿方法&指数分布族&GLM的相关文章

牛顿方法、指数分布族、广义线性模型—斯坦福ML公开课笔记4

个人总结: 1.这一篇文章主要是证明性的东西为主,所以说数学公式相对较多,原文笔记作者省略了一些东西,没有和上文很好衔接,所以初学者不一定看明白,建议结合斯坦福机器学习原文讲义(是英文的,没找到有全文中文翻译版的)看一看,如果刚入门对公式的推导就迷糊,说明你有必要去学一些数学基础. 2.结合上一篇文章中提到的梯度下降方法,本文提出了一种更快的迭代方法,叫牛顿方法.原文中公式(1)都能看懂,一转眼怎么就变公式(2)了呢?不知有没有对此迷糊的朋友,其实原文作者这么写确实存在误会,实际上公式(2)不应

Stanford大学机器学习公开课(四):牛顿法、指数分布族、广义线性模型

(一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x),如果我们要求函数值为0时的x,如图所示: 我们先随机选一个点,然后求出该点的切线,即导数,延长它使之与x轴相交,以相交时的x的值作为下一次迭代的值. 更新规则为: 那么如何将牛顿方法应用到机器学习问题求解中呢? 对于机器学习问题,我们优化的目标函数为极大似然估计L,当极大似然估计函数取得最大时,其导

【cs229-Lecture4】GLMS:选定指数分布族,如何用它来推导出GLM?

在Lecture4中有3部分内容: Newton's method        牛顿方法 Exceponential Family        指数分布族 Generalized Linear Models        广义线性模型(GLMS) 牛顿法上一篇随便中已经讲过了,是平行于梯度下降算法的另一种最优化算法. 然后,视频中证明了伯努利分布和高斯分布都属是指数分布族中的特例的证明,实际上就是把这两种分布转化为指数分布族的形式,然后一一去对照,判断是否符合. 接下来,就讲到了当我们选定了

Nani_xiao的机器学习与总结:Andrew Ng.机器学习(四) :牛顿方法

重温概率论的基础 批梯度上升规则和随机梯度上升规则 拟合出logistic回归模型. 利用牛顿方法来进行模型拟合. 牛顿法也叫切线法. 为了使牛顿算法有效,需要将f满足某些条件,这些条件相当复杂.通常如何初始化x不是个大问题,一般讲f(x) = 0,这些算法通常不会考虑收敛性的问题,一般,这些算法都是收敛的,但收敛速度会有很大差别.牛顿算法是一个收敛速度很快的算法,收敛速度可以理解为二次收敛.牛顿方法的每一次迭代,都会使你正在逼近解的有效数字的数目加倍,不考虑常量因子. 其他知识点:Hessia

牛顿方法 - Andrew Ng机器学习公开课笔记1.5

牛顿方法(Newton's method) 逻辑回归中利用Sigmoid函数g(z)和梯度上升来最大化?(θ).现在我们讨论另一个最大化?(θ)的算法----牛顿方法. 牛顿方法是使用迭代的方法寻找使f(θ)=0的θ值,在这里θ是一个真实的值,不是一个参数,只不过θ的真正取值不确定.牛顿方法数学表达式为: 牛顿方法简单的理解方式为:先随机选一个点,然后求出f在该点的切线,即f在该点的导数.该切线等于0的点,即该切线与x轴相交的点为下一次迭代的值.直至逼近f等于0的点.过程如下图: 牛顿方法最大化

斯坦福公开课4:牛顿方法

北京理工大学计算机专业2016级硕士在读,方向:Machine Learning,NLP,DM 本讲大纲: 1.牛顿方法(Newton's method) 2.指数族(Exponential family) 3.广义线性模型(Generalized linear models) 牛顿法 假设有函数:,我们希望找到满足的值. 这里是实数. 牛顿方法执行下面的更新: 具体原理可参考文章<Jacobian矩阵和Hessian矩阵> 下图为执行牛顿方法的过程:  简单的来说就是通过求当前点的导数得到下

斯坦福CS229机器学习课程笔记二:GLM广义线性模型与Logistic回归

一直听闻Logistic Regression逻辑回归的大名,比如吴军博士在<数学之美>中提到,Google是利用逻辑回归预测搜索广告的点击率.因为自己一直对个性化广告感兴趣,于是疯狂google过逻辑回归的资料,但没有一个网页资料能很好地讲清到底逻辑回归是什么.幸好,在CS229第三节课介绍了逻辑回归,第四节课介绍了广义线性模型,综合起来总算让我对逻辑回归有了一定的理解.与课程的顺序相反,我认为应该先了解广义线性模型再来看逻辑回归,也许这也是为什么讲逻辑回归的网页资料总让人感觉云里雾里的原因

指数分布族与广义线性模型

整理一下之前所学过的关于回归问题的思路: 问题引入:房屋估价,给定新的房屋信息,预测出相应的房屋价格: 学习过程:构建模型h(θ): 线性回归:最小二乘法.梯度下降法.线性模型的概率解释: 局部加权回归:带权重的线性回归.权值的钟形函数: 逻辑回归:分类方法.梯度上升法.牛顿法.引出感知机学习算法: 广义线性模型:指数分布族.给定概率分布推导出线性模型. 这一节所讨论的重点就是最后的这一条内容,回顾讨论过的线性回归与逻辑回归的假设可知: 在线性回归模型的概率解释中假设: 在逻辑回归模型的推导中假

机器学习问题方法总结

机器学习问题方法总结 大类 名称 关键词 有监督分类 决策树 信息增益 分类回归树 Gini指数,Χ2统计量,剪枝 朴素贝叶斯 非参数估计,贝叶斯估计 线性判别分析 Fishre判别,特征向量求解 K最邻近 相似度度量:欧氏距离.街区距离.编辑距离.向量夹角.Pearson相关系数 逻辑斯谛回归(二值分类) 参数估计(极大似然估计).S型函数 径向基函数网络 非参数估计.正则化理论.S型函数 对偶传播网络 无导师的竞争学习.有导师的Widrow-Hoff学习 学习向量量化网络 一个输出层细胞跟几