Spark on Yarn

YARN是什么

YARN在hadoop生态系统中的位置

YARN产生的背景

YARN的基本架构

ResourceManager

NodeManager

ApplicationMaster

container

Spark On Yarn 配置和部署

编译时包含yarn

基本配置

在没有配置的前提下试下启动spark-shell

可以看到启动没问题

这里问题就来了!!!

下面我们配上来看看

可以看到报错了!!!

应该是资源不足导致的

先重启一下各个进程

$SPARK_HOME/bin/spark-submit --class org.apache.spark.examples.JavaSparkPi --master yarn-cluster --num-executors 1 --driver-memory 1g --executor-memory 1g --executor-cores 1 $SPARK_HOME/lib/spark-examples-1.6.1-hadoop2.6.0.jar

注意观察了

可以看到

以下为视频内容(本人自己的环境出错,费了好多精力找不到原因)

提交spark job给yarn

在跑的过程中我们可以在网页上看到

Spark On Yarn 运行架构解析

yarn client

如何更改默认配置

在这里修改

环境变量

http://spark.apache.org/docs/1.6.1/running-on-yarn.html

时间: 2024-10-03 02:17:42

Spark on Yarn的相关文章

Spark on Yarn年度知识整理

大数据体系结构: Spark简介 Spark是整个BDAS的核心组件,是一个大数据分布式编程框架,不仅实现了MapReduce的算子map 函数和reduce函数及计算模型,还提供更为丰富的算子,如filter.join.groupByKey等.是一个用来实现快速而同用的集群计算的平台. Spark将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度.RPC.序列化和压缩,并为运行在其上的上层组件提供API.其底层采用Scala这种函数式语言书写而成,并且所提供的API深度借鉴Sca

Spark On YARN内存和CPU分配

本篇博客参考:http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/ 软件版本: CDH:5.7.2,JDK:1.7: 问题描述: 在使用Spark On YARN时(无论是Client模式或者是Cluster模式,当然下面会有这种模式的对比区别),可以添加诸如: --executor-memory 8G --executor-cores 5 --num-executors 20 等等这样的

Spark on Yarn彻底解密(DT大数据梦工厂)

内容: 1.Hadoop Yarn的工作流程解密: 2.Spark on Yarn两种运行模式实战: 3.Spark on Yarn工作流程解密: 4.Spark on Yarn工作内幕解密: 5.Spark on Yarn最佳实践: 资源管理框架Yarn Mesos是分布式集群的资源管理框架,和大数据没关系,但是可以管理大数据的资源 ==========Hadoop Yarn解析============ 1.Yarn是Hadoop推出的资源管理器,是负责分布式(大数据)集群计算的资源管理的,负

spark 在yarn执行job时一直抱0.0.0.0:8030错误

近日新写完的spark任务放到yarn上面执行时,在yarn的slave节点中一直看到报错日志:连接不到0.0.0.0:8030 . 1 The logs are as below: 2 2014-08-11 20:10:59,795 INFO [main] org.apache.hadoop.yarn.client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8030 3 2014-08-11 20:11:01,838 INFO [ma

Oozie Spark on YARN requirement failed

软件环境: CDH:5.7.3:Oozie:4.1.0-CDH5.7.3 : Spark:1.6.0-cdh5.7.3-hadoop2.6.0-cdh5.7.3 : Hadoop:hadoop2.6.0-cdh5.7.3(HDFS 采用HA方式): 问题描述: 在使用CDH5.7.3版本的时候,发起一个Oozie工作流,该工作流使用Spark On YARN的方式提交一个Spark程序,但是在Oozie中该程序运行失败,同时找到YARN监控中对应的任务,发现出现下面的错误(该Spark任务如果使

配置Spark on YARN集群内存

参考原文:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 运行文件有几个G大,默认的spark的内存设置就不行了,需要重新设置.还没有看Spark源码,只能先搜搜相关的博客解决问题. 按照Spark应用程序中的driver分布方式不同,Spark on YARN有两种模式: yarn-client 模式. yarn-cluster模式.当在YARN上运行Spark作业,每个Sp

Spark on Yarn: Cluster模式Scheduler实现

背景 主体逻辑 具体实现 AM YarnAllocator Executor 背景 Spark on Yarn分yarn-cluster和yarn-client两种模式. 本文通过Cluster模式的TaskScheduler实现入手,梳理一遍spark on yarn的大致实现逻辑. 前提我对两种模式以及yarn任务的整体运行逻辑不是很清楚. 主体逻辑 cluster模式中,使用的TaskScheduler是YarnClusterScheduler. 它继承了默认使用的TaskSchedule

Spark on Yarn部署

环境:Linux, 8G 内存,60G 硬盘,Hadoop 2.2.0,Spark 1.0.0, Scala 2.10.3 1. 安装Hadoop Yarn 集群 http://blog.csdn.net/zlcd1988/article/details/36008681 这篇Blog很详细的介绍了如何部署Hadoop Yarn 集群. 2. 安装Scala http://www.scala-sbt.org/download.html 下载 scala-2.10.3.tgz $ tar -zxv

Spark 1.0.0 横空出世 Spark on yarn 部署(hadoop 2.4)

就在昨天,北京时间5月30日20点多.Spark 1.0.0终于发布了:Spark 1.0.0 released 根据官网描述,Spark 1.0.0支持SQL编写:Spark SQL Programming Guide 个人觉得这个功能对Hive的市场的影响很小,但对Shark冲击很大,就像win7和winXP的关系,自相残杀嘛? 这么着急的发布1.x 版是商业行为还是货真价实的体现,让我们拭目以待吧~~~~ 本文是CSDN-撸大湿原创,如要转载请注明出处,谢谢:http://blog.csd