第一题:
973. K Closest Points to Origin
We have a list of points
on the plane. Find the K
closest points to the origin (0, 0)
.
(Here, the distance between two points on a plane is the Euclidean distance.)
You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)
Example 1:
Input: points = [[1,3],[-2,2]], K = 1 Output: [[-2,2]] Explanation: The distance between (1, 3) and the origin is sqrt(10). The distance between (-2, 2) and the origin is sqrt(8). Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin. We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].
Example 2:
Input: points = [[3,3],[5,-1],[-2,4]], K = 2 Output: [[3,3],[-2,4]] (The answer [[-2,4],[3,3]] would also be accepted.)
Note:
1 <= K <= points.length <= 10000
-10000 < points[i][0] < 10000
-10000 < points[i][1] < 10000
题目大意:给你一些点,让你找离远点最近的K个点。主要考的是二维数组排序。
class Solution { public: vector<vector<int> > kClosest(vector<vector<int> >& points, int K) { vector<vector<int> > ans; int len = points.size(); for(int i=0; i<len; i++) { int x = points[i][0]; int y = points[i][1]; points[i].push_back(x*x+y*y); } sort(points.begin(), points.end(), [](const vector<int> &a, const vector<int> &b) { return a[2] < b[2]; }); for(int i=0; i<K; i++) { vector<int> res; res.push_back(points[i][0]); res.push_back(points[i][1]); ans.push_back(res); } return ans; } };
第二题:
976. Largest Perimeter Triangle
Given an array A
of positive lengths, return the largest perimeter of a triangle with non-zero area, formed from 3 of these lengths.
If it is impossible to form any triangle of non-zero area, return 0
.
Example 1:
Input: [2,1,2] Output: 5
Example 2:
Input: [1,2,1] Output: 0
Example 3:
Input: [3,2,3,4] Output: 10
Example 4:
Input: [3,6,2,3] Output: 8
Note:
3 <= A.length <= 10000
1 <= A[i] <= 10^6
题目大意:从数组中,找出三个点组成一个周长最大的三角形,然后输出周长。
数据比较小,直接暴力的。
class Solution { public: bool ok(int a, int b, int c) { return a-b<c; } int largestPerimeter(vector<int>& A) { int len = A.size(); sort(A.begin(), A.end()); for(int i=len-1; i>=0; i--) { for(int j=i-1; j>=0; j--) { if( ok(A[i], A[j], A[j-1])) { return A[i]+A[j]+A[j-1]; } } } return 0; } };
第三题:
974. Subarray Sums Divisible by K
Given an array A
of integers, return the number of (contiguous, non-empty) subarrays that have a sum divisible by K
.
Example 1:
Input: A = [4,5,0,-2,-3,1], K = 5 Output: 7 Explanation: There are 7 subarrays with a sum divisible by K = 5: [4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]
Note:
1 <= A.length <= 30000
-10000 <= A[i] <= 10000
2 <= K <= 10000
题目大意:统计有多少条满足条件的子序列。条件1:连续,必须是连续子序列,条件2:序列和可以整除K。
思路:求出前缀和,想要找到连续子序列之和是可以整除K的话,那么前缀和只差模K也就是为0,也就是说统计模K相等的前缀和之差的个数,求一个等差数列求和。
做题的时候开始考虑错了,后面想到了解决方法但是没时间了,对照rank写出了一个我自己都认为是错的程序,提交AC。想不清楚,等过几天想清楚了,在仔细写下吧。
class Solution { public: int subarraysDivByK(vector<int>& A, int K) { int a[K]; memset(a, 0, sizeof(a)); int len = A.size(); a[0] = 1; int res = 0; for(int i=0; i<len; i++) { A[i] += A[i-1]; int cnt = (A[i]%K+K)%K; a[cnt] ++; } for(int i=0; i<K; i++) { res += (a[i]-1)*a[i]/2; } return res; } };
原文地址:https://www.cnblogs.com/Asimple/p/10262296.html