进程池和线程池 concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor

import time#线程池可以用shutdown submit

from threading import current_thread

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor

def f1(n):

  print(n)

  time.seelp(1)

  return n*n

if __name__ =="__main__":
  tp = ThreadPoolExecutor(4)

  lst = []

  for   i   in range(10):

    res = tp.submit(f1,i)

    lst.append(res)

  tp.shutdown()

  for i in lst:

    print(i.result())

import time#进程池  要用map

from threading import current_thread

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor

def f1(n):

  print(n)

  time.seelp(1)

  return n*n

if __name__ =="__main__":
  tp = ProcessPoolExecutor(4)

  res = tp.map(f1,rangr(10))

  print(res)

原文地址:https://www.cnblogs.com/16795079a/p/10316321.html

时间: 2025-01-17 09:48:25

进程池和线程池 concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor的相关文章

创建进程池与线程池concurrent.futures模块的使用

一.进程池. 当并发的任务数量远远大于计算机所能承受的范围,即无法一次性开启过多的任务数量就应该考虑去 限制进程数或线程数,从而保证服务器不会因超载而瘫痪.这时候就出现了进程池和线程池. 二.concurrent.futures模块介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 ProcessPoolExecutor:进程池,提供异步调用 Both implement the same interface,

4月27日 python学习总结 GIL、进程池、线程池、同步、异步、阻塞、非阻塞

一.GIL:全局解释器锁 1 .GIL:全局解释器锁 GIL本质就是一把互斥锁,是夹在解释器身上的, 同一个进程内的所有线程都需要先抢到GIL锁,才能执行解释器代码 2.GIL的优缺点: 优点:  保证Cpython解释器内存管理的线程安全 缺点:同一进程内所有的线程同一时刻只能有一个执行,也就说Cpython解释器的多线程无法实现并行 二.GIL与多线程 有了GIL的存在,同一时刻同一进程中只有一个线程被执行 听到这里,有的同学立马质问:进程可以利用多核,但是开销大,而python的多线程开销

使用concurrent.futures模块并发,实现进程池、线程池

一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的异步多线程/多进程代码.从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来创建线程池和进程池的代码.实现了对thread

python并发编程之进程池,线程池concurrent.futures

进程池与线程池 在刚开始学多进程或多线程时,我们迫不及待地基于多进程或多线程实现并发的套接字通信,然而这种实现方式的致命缺陷是:服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多, 这会对服务端主机带来巨大的压力,甚至于不堪重负而瘫痪,于是我们必须对服务端开启的进程数或线程数加以控制,让机器在一个自己可以承受的范围内运行,这就是进程池或线程池的用途, 例如进程池,就是用来存放进程的池子,本质还是基于多进程,只不过是对开启进程的数目加上了限制 Python--concurrent.fu

27 Apr 18 GIL 多进程多线程使用场景 线程互斥锁与GIL对比 基于多线程实现并发的套接字通信 进程池与线程池 同步、异步、阻塞、非阻塞

27 Apr 18 一.全局解释器锁 (GIL) 运行test.py的流程: a.将python解释器的代码从硬盘读入内存 b.将test.py的代码从硬盘读入内存  (一个进程内装有两份代码) c.将test.py中的代码像字符串一样读入python解释器中解析执行 1 .GIL:全局解释器锁 (CPython解释器的特性) In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple na

python之进程池与线程池

一.进程池与线程池介绍池子使用来限制并发的任务数目,限制我们的计算机在一个自己可承受的范围内去并发地执行任务 当并发的任务数远远超过了计算机的承受能力时,即无法一次性开启过多的进程数或线程数时就应该用池的概念将开启的进程数或线程数 池子内什么时候装进程:并发的任务属于计算密集型池子内什么时候装线程:并发的任务属于IO密集型 不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不

python并发编程之进程池,线程池

要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉只要你用并发,就会有锁的问题,但是你不能一直去自己加锁吧那么我们就用QUEUE,这样还解决了自动加锁的问题由Queue延伸出的一个点也非常重要的概念.以后写程序也会用到这个思想.就是生产者与消费者问题 一.Python标准模块--concurrent.futures(并发未来) concurent.future模块需要了解的1.concurent.fut

python 之 并发编程(进程池与线程池、同步异步阻塞非阻塞、线程queue)

9.11 进程池与线程池 池子使用来限制并发的任务数目,限制我们的计算机在一个自己可承受的范围内去并发地执行任务 池子内什么时候装进程:并发的任务属于计算密集型 池子内什么时候装线程:并发的任务属于IO密集型 进程池: from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor import time,os,random ? def task(x): print('%s 接客' %os.getpid()) time.

Python入门学习-DAY37-进程池与线程池、协程、gevent模块

一.进程池与线程池 基本使用: 进程池和线程池操作一样 提交任务的两种方式: 同步调用:提交完一个任务之后,就在原地等待,等待任务完完整整地运行完毕拿到结果后,再执行下一行代码,会导致任务是串行执行的 异步调用:提交完一个任务之后,不在原地等待,结果???,而是直接执行下一行代码,会导致任务是并发执行的 同步调用 from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor import time,random,os