图像的膨胀与腐蚀——OpenCV与C++的具体实现

目录

  • 1. 膨胀与腐蚀的原理
  • 2. 膨胀的具体实现
    • 1) OpenCV实现
    • 2) C/C++实现
    • 3) 验证与结果
  • 3. 腐蚀的具体实现

1. 膨胀与腐蚀的原理

膨胀与腐蚀是数学形态学在图像处理中最基础的操作。在笔者之前的文章《图像的卷积(滤波)运算(一)——图像梯度》《图像的卷积(滤波)运算(二)——高斯滤波》具体介绍了图像卷积\滤波的具体的概念与操作,图像的膨胀与腐蚀其实也是一种类似的卷积操作。其卷积操作非常简单,对于图像的每个像素,取其一定的邻域,计算最大值/最小值作为新图像对应像素位置的像素值。其中,取最大值就是膨胀,取最小值就是腐蚀。

2. 膨胀的具体实现

1) OpenCV实现

在OpenCV中实现了图像膨胀的函数dilate(),可以直接调用:

Mat img = imread(imagename, IMREAD_GRAYSCALE);
if (img.empty())
{
    fprintf(stderr, "Can not load image %s\n", imagename);
    return -1;
}

//OpenCV方法
Mat dilated_cv;
dilate(img, dilated_cv, Mat());

dilate()函数第一个参数表示输入影像,第二个参数表示输出影像,第三个表示一个默认的核,在3X3的范围内寻找最大值。

2) C/C++实现

在一般的图像处理时,图像读写是由专门的组件进行读取的。这这里仍然使用OpenCV进行读取,以为增加复杂性。而在CV::Mat类中,提供了at()函数访问某一行某一列的像素值,可以通过at()函数去访问每一个像素的领域。

与之前OpenCV实现的一样,对于每一个像素,遍历以其像素位置为中心的3X3邻域,取最大值作为新图像对应位置的像素值。
其具体实现如下:

//从文件中读取成灰度图像
const char* imagename = "D:\\Data\\imgDemo\\lena.jpg";
Mat img = imread(imagename, IMREAD_GRAYSCALE);
if (img.empty())
{
    fprintf(stderr, "Can not load image %s\n", imagename);
    return -1;
}

//自定义方法
Mat dilated_my;
dilated_my.create(img.cols, img.rows, CV_8UC1);
for (int i = 0; i < img.rows; ++i)
{
    for (int j = 0; j < img.cols; ++j)
    {
        //uchar minV = 255;
        uchar maxV = 0;

        //遍历周围最大像素值
        for (int yi = i-1; yi <= i+1; yi++)
        {
            for (int xi = j-1; xi <= j+1; xi++)
            {
                if (xi<0||xi>= img.cols|| yi<0 || yi >= img.rows)
                {
                    continue;
                }
                //minV = (std::min<uchar>)(minV, img.at<uchar>(yi, xi));
                maxV = (std::max<uchar>)(maxV, img.at<uchar>(yi, xi));
            }
        }
        dilated_my.at<uchar>(i, j) = maxV;
    }
}   

3) 验证与结果

为了验证自己的算法是否正确,可以通过把两者膨胀的结果通过compare()函数进行比较。compare()函数会逐个比较两者的像素值,如果相同就会返回255(白色),如果不相同就会返回0(黑色)。整个过程的具体实现如下:

#include <iostream>
#include <algorithm>
#include <opencv2\opencv.hpp>

using namespace cv;
using namespace std;

int main()
{
    //从文件中读取成灰度图像
    const char* imagename = "D:\\Data\\imgDemo\\lena.jpg";
    Mat img = imread(imagename, IMREAD_GRAYSCALE);
    if (img.empty())
    {
        fprintf(stderr, "Can not load image %s\n", imagename);
        return -1;
    }

    //OpenCV方法
    Mat dilated_cv;
    dilate(img, dilated_cv, Mat());

    //自定义方法
    Mat dilated_my;
    dilated_my.create(img.cols, img.rows, CV_8UC1);
    for (int i = 0; i < img.rows; ++i)
    {
        for (int j = 0; j < img.cols; ++j)
        {
            //uchar minV = 255;
            uchar maxV = 0;

            //遍历周围最大像素值
            for (int yi = i-1; yi <= i+1; yi++)
            {
                for (int xi = j-1; xi <= j+1; xi++)
                {
                    if (xi<0||xi>= img.cols|| yi<0 || yi >= img.rows)
                    {
                        continue;
                    }
                    //minV = (std::min<uchar>)(minV, img.at<uchar>(yi, xi));
                    maxV = (std::max<uchar>)(maxV, img.at<uchar>(yi, xi));
                }
            }
            dilated_my.at<uchar>(i, j) = maxV;
        }
    }   

    //比较两者的结果
    Mat c;
    compare(dilated_cv, dilated_my, c, CMP_EQ);

    //显示
    imshow("原始", img);
    imshow("膨胀_cv", dilated_cv);
    imshow("膨胀_my", dilated_my);
    imshow("比较结果", c);

    waitKey();

    return 0;
}

其运行结果如下所示。可以发现最后的比较结果是一张白色的图像,说明自己实现的算法是正确的。

3. 腐蚀的具体实现

同样的办法可以实现图像腐蚀的过程,只要将求局部最大值改成局部最小值就可以了。具体实现过程如下:

#include <iostream>
#include <algorithm>
#include <opencv2\opencv.hpp>

using namespace cv;
using namespace std;

int main()
{
    //从文件中读取成灰度图像
    const char* imagename = "D:\\Data\\imgDemo\\lena.jpg";
    Mat img = imread(imagename, IMREAD_GRAYSCALE);
    if (img.empty())
    {
        fprintf(stderr, "Can not load image %s\n", imagename);
        return -1;
    }

    //OpenCV方法
    Mat eroded_cv;
    erode(img, eroded_cv, Mat());

    //自定义方法
    Mat eroded_my;
    eroded_my.create(img.cols, img.rows, CV_8UC1);
    for (int i = 0; i < img.rows; ++i)
    {
        for (int j = 0; j < img.cols; ++j)
        {
            uchar minV = 255;
            //uchar maxV = 0;

            //遍历周围最大像素值
            for (int yi = i-1; yi <= i+1; yi++)
            {
                for (int xi = j-1; xi <= j+1; xi++)
                {
                    if (xi<0||xi>= img.cols|| yi<0 || yi >= img.rows)
                    {
                        continue;
                    }
                    minV = (std::min<uchar>)(minV, img.at<uchar>(yi, xi));
                    //maxV = (std::max<uchar>)(maxV, img.at<uchar>(yi, xi));
                }
            }
            eroded_my.at<uchar>(i, j) = minV;
        }
    }   

    //比较两者的结果
    Mat c;
    compare(eroded_cv, eroded_my, c, CMP_EQ);

    //显示
    imshow("原始", img);
    imshow("膨胀_cv", eroded_cv);
    imshow("膨胀_my", eroded_my);
    imshow("比较结果", c);

    waitKey();

    return 0;
}

其运行结果如下:

原文地址:https://www.cnblogs.com/charlee44/p/10633890.html

时间: 2024-10-07 13:10:31

图像的膨胀与腐蚀——OpenCV与C++的具体实现的相关文章

Atitit 图像处理—图像形态学(膨胀与腐蚀)

Atitit 图像处理-图像形态学(膨胀与腐蚀) 1.1. 膨胀与腐蚀1 1.2. 图像处理之二值膨胀及应用2 1.3. 测试原理,可以给一个5*5pic,测试膨胀算法5 1.4. Photoshop里面的处理5 1.5. 类库的处理,好像没找到jhlabs,6 1.6. Attilax 源码6 1.1. 膨胀与腐蚀 说概念可能很难解释,我们来看图,首先是原图: 膨胀以后会变成这样: 腐蚀以后则会变成这样: 看起来可能有些莫名其妙,明明是膨胀,为什么字反而变细了,而明明是腐蚀,为什么字反而变粗了

图像的膨胀与腐蚀、细化

原理:在特殊领域运算形式--结构元素(Sturcture Element),在每个像素位置上与二值图像对应的区域进行特定的逻辑运算.运算结构是输出图像的相应像素.运算效果取决于结构元素大小内容以及逻辑运算性质. 结构元素:膨胀和腐蚀操作的最基本组成部分,用于测试输出图像,通常要比待处理的图像小还很多.二维平面结构元素由一个数值为0或1的矩阵组成.结构元素的原点指定了图像中需要处理的像素范围,结构元素中数值为1的点决定结构元素的邻域像素在进行膨胀或腐蚀操作时是否需要参与计算. 先来定义一些基本符号

膨胀和腐蚀 - cvErode 和 cvDilate 函数实现

前言 膨胀就是对图中的每个像素取其核范围内最大的那个值,腐蚀就相反.这两个操作常用来突出显示图的某个高亮部分或者昏暗部分以及去噪.本文展示两个分别对图像进行膨胀和腐蚀的例子. 膨胀和腐蚀函数 cvErode 和 cvDilate 函数原型: 1 // 膨胀函数 2 void cvcvDilate ( 3 IplImage *src, // 待处理图像 4 IplImage dst, // 处理后图像 5 IplConvKernel * B = NULL, // 自定义卷积核 6 int iter

【opencv入门之七】形态学图像处理(一):膨胀、腐蚀

参考网站: http://blog.csdn.net/poem_qianmo/article/details/23710721 1.形态学(morphology)概述 数学形态学(Mathematical morphplogy)是数学形态学图像处理的基本理论.其基本的运算包括: 二值腐蚀和膨胀.二值开闭运算.骨架抽取.极限腐蚀.击中击不中变化.形态学梯度.Top-hat变换.颗粒分析.流域变换.灰值腐蚀和膨胀.灰值开闭运算.灰值形态学梯度等. 最基本的两种是:腐蚀和膨胀.其两的主要功能有: 消除

OpenCV实现图像暗区扩张(腐蚀图片)

纯粹阅读,请移步OpenCV实现图像暗区扩张(腐蚀图片) 效果图 源码 KqwOpenCVBlurDemo 暗区扩张,也叫腐蚀,要实现这样的效果,我们可以选取一个合适大小的核,用被核覆盖的最小值代替锚点像素. 我们首先定义一个合适大小的核 Mat kernelErode = Imgproc.getStructuringElement(Imgproc.MORPH_ELLIPSE, new Size(5, 5)); 然后调用Imgproc.erode()方法把图像的暗区放大 // 扩大暗区(腐蚀)

膨胀和腐蚀 - 解决图像缺陷问题

目录 腐蚀 膨胀 闭运算 && 开运算 腐蚀 故名思义就是将图片向内进行收缩. 图1 腐蚀示意图 ??设经过背景减后的图像为 B,经过腐蚀运算处理后的图像为 P,用 S 表示所用 3R圆(为进化计算可由采用3x3的矩形来代替) 的结构元素,计算公式如下: \[ P=B\Theta S= \{x,y | S_{x,y}\subseteq B\} \] ??这里 \(S_{x,y}\) 表示将结构元素的原点移动到点 (x, y) 处. 腐蚀运算的具体过程如下: ??选定结构元素 S 的起点,以

python实现图像膨胀和腐蚀算法

如果您觉得本文不错!记得点赞哦! 一. 图像形态学简介: 经验之谈:形态学操作一般作用于二值图像,来连接相邻的元素(膨胀)或分离成独立的元素(侵蚀).腐蚀和膨胀是针对图片中的白色(即前景)部分! 二. 图像形态学操作 膨胀和腐蚀的算法: 膨胀算法: 对于待操作的像素 f(x,y),不论 f(x,y-1) .f(x,y+1) .f(x-1,y) .f(x+1,y) 哪一个为255,则 f(x,y)=255. 膨胀操作 ↑ 换句话说:将待操作的图像像素与以下  4-近邻矩阵 相乘,结果大于255的话

学习 opencv---(9)形态学图像处理(一):膨胀和腐蚀

本篇文章中,我们一起探究了图像处理中,最基本的形态学运算--膨胀与腐蚀.浅墨在文章开头友情提醒,用人物照片做腐蚀和膨胀的素材图片得到的效果会比较惊悚,毁三观的,不建议尝试.......... 一.理论与概念讲解--从现象到本质 1.1 形态学概述 形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构,而我们图像处理中指的形态学,往往表示的是数学形态学,下面一起来了解数学形态学的概念. 数学形态学(Mathematical morphology)是一门建立在

膨胀和腐蚀

形态学概述 形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构.而我们图像处理中指的形态学,往往表示的是数学形态学.下面一起来了解数学形态学的概念. 数学形态学(Mathematical morphology) 是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论.其基本的运算包括:二值腐蚀和膨胀.二值开闭运算.骨架抽取.极限腐蚀.击中击不中变换.形态学梯度.Top-hat变换.颗粒分析.流域变换.灰值腐蚀和膨胀.灰值开闭运算.