张正友标定算法原理详解

原文见http://blog.csdn.net/u010128736/

一、背景

  ”张正友标定”是指张正友教授1998年提出的单平面棋盘格的摄像机标定方法[1]。文中提出的方法介于传统标定法和自标定法之间,但克服了传统标定法需要的高精度标定物的缺点,而仅需使用一个打印出来的棋盘格就可以。同时也相对于自标定而言,提高了精度,便于操作。因此张氏标定法被广泛应用于计算机视觉方面。
二、计算内参和外参的初值

原文地址:https://www.cnblogs.com/excellentlhw/p/10664460.html

时间: 2024-12-22 02:55:30

张正友标定算法原理详解的相关文章

张正友标定算法理论及算法实现

张正友标定算法理论及算法实现 理论基础 1999年,微软研究院的张正友提出了基于移动平面模板的相机标定方法.此方法是介于传统标定方法和自标定方法之间的一种方法,传统标定方法虽然精度高设备有较高的要求,其操作过程也比较繁琐,自标定方法的精度不高,张正友标定算法克服了这两者的缺点同时又兼备二者的优点,因此对办公.家庭的场合使用的桌面视觉系统(DVS)很适合. 设三维世界中坐标的点为:和二维相机平面坐标的点为: 为方便运算,模板被定义在世界坐标系中与X-y平面平行(即Z=0)的平面上,为模板平面上点的

张正友标定算法解读(转)

一直以来想写篇相机标定方面的东西,最近组会上也要讲标定方面东西,所以顺便写了.无论是OpenCV还是matlab标定箱,都是以张正友棋盘标定算法为核心实现的,这篇PAMI的文章<<A Flexible New Technique for Camera Calibration>>影响力极大,张正友是zju的机械系出身,貌似现在是微软的终身教授了,有点牛的.我就简单的介绍下算法的核心原理,公式的推理可能有点多... 一 基本问题描述:空间平面的三维点与相机平面二维点的映射 假设空间平面

EM算法-原理详解

1. 前言 概率模型有时既含有观测变量(observable variable),又含有隐变量或潜在变量(latent variable),如果仅有观测变量,那么给定数据就能用极大似然估计或贝叶斯估计来估计model参数:但是当模型含有隐变量时,需要一种含有隐变量的概率模型参数估计的极大似然方法估计--EM算法 2. EM算法原理 EM算法称为期望极大值算法(expectation maximizition algorithm,EM),是一种启发式的迭代算法. EM算法的思路是使用启发式的迭代方

EM算法原理详解

1.引言 以前我们讨论的概率模型都是只含观测变量(observable variable), 即这些变量都是可以观测出来的,那么给定数据,可以直接使用极大似然估计的方法或者贝叶斯估计的方法:但是当模型含有隐变量(latent variable)的时候, 就不能简单地使用这些估计方法. 如在高斯混合和EM算法中讨论的高斯混合就是典型的含有隐变量的例子,已经给出EM算法在高斯混合模型中的运用,下面我们来讨论一些原理性的东西. 2.Jensen 不等式 令是值域为实数的函数,那么如果,则就是一个凸函数

张正友相机标定算法解读

张正友标定算法解读 一直以来想写篇相机标定方面的东西,最近组会上也要讲标定方面东西,所以顺便写了.无论是OpenCV还是matlab标定箱,都是以张正友棋盘标定算法为核心实现的,这篇PAMI的文章<A Flexible New Technique for Camera Calibration>影响力极大,张正友是浙江大学的机械系出身,貌似现在是微软的终身教授了.我就简单的介绍下算法的核心原理,公式的推理可能有点多. 一 基本问题描述:空间平面的三维点与相机平面二维点的映射. 假设空间平面中三维

SLAM入门之视觉里程计(6):相机标定 张正友经典标定法详解

想要从二维图像中获取到场景的三维信息,相机的内参数是必须的,在SLAM中,相机通常是提前标定好的.张正友于1998年在论文:"A Flexible New Technique fro Camera Calibration"提出了基于单平面棋盘格的相机标定方法.该方法介于传统的标定方法和自标定方法之间,使用简单实用性强,有以下优点: 不需要额外的器材,一张打印的棋盘格即可. 标定简单,相机和标定板可以任意放置. 标定的精度高. 相机的内参数 设\(P=(X,Y,Z)\)为场景中的一点,在

Isolation Forest算法实现详解

本文介绍的 Isolation Forest 算法原理请参看我的博客:Isolation Forest异常检测算法原理详解,本文中我们只介绍详细的代码实现过程. 1.ITree的设计与实现 首先,我们参看原论文中的ITree的构造伪代码: 这里写图片描述 1.1 设计ITree类的数据结构 由原论文[1,2]以及上述伪代码可知,ITree是一个二叉树,并且构建ITree的算法采用的是递归构建.同时构造的结束条件是: 当前节点的高度超过了算法设置的阈值 l ;当前子树只包含一个叶节点:当前子树的所

快速傅立叶变换算法FFT——图像处理中的数学原理详解22

欢迎关注我的博客专栏"图像处理中的数学原理详解" 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 图像处理中的数学原理详解(已发布的部分链接整理) http://blog.csdn.net/baimafujinji/article/details/48751037 交流学习可加图像处理研究学习QQ群(529549320) 傅立叶变换以高等数学(微积分)中的傅立叶级数为基

张正友相机标定Opencv实现以及标定流程&amp;&amp;标定结果评价&amp;&amp;图像矫正流程解析(附标定程序和棋盘图)

使用Opencv实现张正友法相机标定之前,有几个问题事先要确认一下,那就是相机为什么需要标定,标定需要的输入和输出分别是哪些? 相机标定的目的:获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像. 相机标定的输入:标定图像上所有内角点的图像坐标,标定板图像上所有内角点的空间三维坐标(一般情况下假定图像位于Z=0平面上). 相机标定的输出:摄像机的内参.外参系数. 这三个基础的问题就决定了使用Openc