pandas中,dataframe 进行数据合并-pd.concat()

``# 通过数据框列向(左右)合并 a = pd.DataFrame(X_train) b = pd.DataFrame(y_train) # 合并数据框(合并前需要将数据设置成DataFrame格式), 其中,如果axis=1,ignore_index将改变的是列上的索引(属性名) print(pd.concat([a,b], axis=1, ignore_index=False))

原文地址:https://www.cnblogs.com/komean/p/10670548.html

时间: 2024-10-13 07:12:50

pandas中,dataframe 进行数据合并-pd.concat()的相关文章

pandas中DataFrame

python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

Pandas中DataFrame数据合并、连接(concat、merge、join)之concat

一.concat:沿着一条轴,将多个对象堆叠到一起 concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True): objs:需要连接的对象集合,一般是列表或字典: axis:连接轴向: join:参数为'outer'或'inner': join_axes=[]:指定自定义的索

Pandas中DataFrame数据合并、连接(concat、merge、join)之join

pandas.DataFrame.join 自己弄了很久,一看官网.感觉自己宛如智障.不要脸了,直接抄 DataFrame.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False) Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by in

pandas中DataFrame相关

1.创建 1.1  标准格式创建 DataFrame创建方法有很多,常用基本格式是:DataFrame 构造器参数:DataFrame(data=[],index=[],coloumns=[]) In [272]: df2=DataFrame(np.arange(16).reshape((4,4)),index=['a','b','c','d'],columns=['one','two','three','four']) In [273]: df2 Out[273]: one two three

Pandas中DataFrame数据合并、连接(concat、merge、join)之merge

二.merge:通过键拼接列 类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来. 该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面. merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=Tr

Pandas中如何处理大数据?

近期的工作和Hive SQL打交道比较多,偶尔遇到一些SQL不好解决的问题,会将文件下载下来用pandas来处理,由于数据量比较大,因此有一些相关的经验可以和大家分享,希望对大家学习pandas有所帮助吧. 大文本数据的读写 有时候我们会拿到一些很大的文本文件,完整读入内存,读入的过程会很慢,甚至可能无法读入内存,或者可以读入内存,但是没法进行进一步的计算,这个时候如果我们不是要进行很复杂的运算,可以使用read_csv提供的chunksize或者iterator参数,来部分读入文件,处理完之后

pandas中DataFrame类的pivot_table函数------Reshaping by pivoting DataFrame objects

以下内容为截取自pandas官网的doc(请看这里),我做了一些翻译. Reshaping by pivoting DataFrame objects Data is often stored in CSV files or databases in so-called “stacked” or “record” format: In [1]: df Out[1]: date variable value 0 2000-01-03 A 0.469112 1 2000-01-04 A -0.282

pandas中DataFrame逐行读取的方法

1 2 3 4 5 6 import pandas as pd dict=[[1,2,3,4,5,6],[2,3,4,5,6,7],[3,4,5,6,7,8],[4,5,6,7,8,9],[5,6,7,8,9,10]] data=pd.DataFrame(dict) print(data) for indexs in data.index: print(data.loc[indexs].values[0:-1]) 实验结果: 0 1 2 3 4 5 0 1 2 3 4 5 6 1 2 3 4 5

SQLServer 中多行数据合并成一行数据(一个字段)

需求:有四行数据,如下: 1.苹果 2.橘子 3.桃子 4.波罗 合并成一个字段:苹果,橘子,桃子,波罗: 需求明确之后,先弄点测试数据,上代码: --创建一个临时表 Create table #temp ( testName varchar(20) ) --写入测试数据 INSERT INTO #temp(testName) values('苹果'); INSERT INTO #temp(testName) values('橘子'); INSERT INTO #temp(testName) v